Application of Data Science for the reconstruction of time series of meteorological variables in the Islas del Rosario (Colombian Caribbean), between the years 2013-2021

Camilo Contreras Vargas, Julián Quintero Ibáñez, Ángela Solanilla
{"title":"Application of Data Science for the reconstruction of time series of meteorological variables in the Islas del Rosario (Colombian Caribbean), between the years 2013-2021","authors":"Camilo Contreras Vargas, Julián Quintero Ibáñez, Ángela Solanilla","doi":"10.26640/22159045.2022.604","DOIUrl":null,"url":null,"abstract":"This study reviews two time series of meteorological variables measured by an automatic station located in Islas del Rosario (Colombian Caribbean), belonging to the Network for Measurement of Oceanographic Parameters and Marine Meteorology (RedMpomm) of the General Maritime Directorate (Dimar). The time series correspond to data of air temperature and wind magnitude in the period 2013-2021, which present some missing values. The objective of the study was to develop a model that would automatically reconstruct missing values in the time series, using the advantages of data science to complete information with estimated values. The importance of obtaining reconstructed series lies in having more solid databases to be used in the research and academic work carried out by Dimar. The methodology developed consisted of the use of imputation of medians from existing data on dates and times associated with missing values, all this through the use of data lags and complementary information such as periodicity relationships on the data set. The results showed that it was possible to implement a reliable methodology capable of estimating the most appropriate value to complete the different time series, which constitutes a first approximation for reconstruction of meteorological data.","PeriodicalId":33310,"journal":{"name":"Boletin Cientifico CIOH","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin Cientifico CIOH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26640/22159045.2022.604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study reviews two time series of meteorological variables measured by an automatic station located in Islas del Rosario (Colombian Caribbean), belonging to the Network for Measurement of Oceanographic Parameters and Marine Meteorology (RedMpomm) of the General Maritime Directorate (Dimar). The time series correspond to data of air temperature and wind magnitude in the period 2013-2021, which present some missing values. The objective of the study was to develop a model that would automatically reconstruct missing values in the time series, using the advantages of data science to complete information with estimated values. The importance of obtaining reconstructed series lies in having more solid databases to be used in the research and academic work carried out by Dimar. The methodology developed consisted of the use of imputation of medians from existing data on dates and times associated with missing values, all this through the use of data lags and complementary information such as periodicity relationships on the data set. The results showed that it was possible to implement a reliable methodology capable of estimating the most appropriate value to complete the different time series, which constitutes a first approximation for reconstruction of meteorological data.
数据科学在重建2013-2021年罗萨里奥岛(哥伦比亚-加勒比地区)气象变量时间序列中的应用
本研究回顾了位于哥伦比亚-加勒比罗萨里奥岛的一个自动站测量的两个气象变量的时间序列,该站属于海事总局海洋参数和海洋气象测量网络。该时间序列对应于2013-2021年期间的气温和风力数据,这些数据存在一些缺失值。这项研究的目的是开发一个模型,利用数据科学的优势,用估计值来完成信息,自动重建时间序列中的缺失值。获得重建序列的重要性在于有更坚实的数据库用于Dimar的研究和学术工作。所制定的方法包括使用现有数据中与缺失值相关的日期和时间的中位数插补,所有这些都是通过使用数据滞后和补充信息,如数据集上的周期关系。结果表明,有可能实现一种可靠的方法,能够估计完成不同时间序列的最合适值,这构成了重建气象数据的第一近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信