BioBroker: Knowledge Discovery Framework for Heterogeneous Biomedical Ontologies and Data

F. Shen, Yugyung Lee
{"title":"BioBroker: Knowledge Discovery Framework for Heterogeneous Biomedical Ontologies and Data","authors":"F. Shen, Yugyung Lee","doi":"10.4236/JILSA.2018.101001","DOIUrl":null,"url":null,"abstract":"A large number of ontologies have been introduced by the biomedical community in recent years. Knowledge discovery for entity identification from ontology has become an important research area, and it is always interesting to discovery how associations are established to connect concepts in a single ontology or across multiple ontologies. However, due to the exponential growth of biomedical big data and their complicated associations, it becomes very challenging to detect key associations among entities in an inefficient dynamic manner. Therefore, there exists a gap between the increasing needs for association detection and large volume of biomedical ontologies. In this paper, to bridge this gap, we presented a knowledge discovery framework, the BioBroker, for grouping entities to facilitate the process of biomedical knowledge discovery in an intelligent way. Specifically, we developed an innovative knowledge discovery algorithm that combines a graph clustering method and an indexing technique to discovery knowledge patterns over a set of interlinked data sources in an efficient way. We have demonstrated capabilities of the BioBroker for query execution with a use case study on a subset of the Bio2RDF life science linked data.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"10 1","pages":"1-20"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2018.101001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A large number of ontologies have been introduced by the biomedical community in recent years. Knowledge discovery for entity identification from ontology has become an important research area, and it is always interesting to discovery how associations are established to connect concepts in a single ontology or across multiple ontologies. However, due to the exponential growth of biomedical big data and their complicated associations, it becomes very challenging to detect key associations among entities in an inefficient dynamic manner. Therefore, there exists a gap between the increasing needs for association detection and large volume of biomedical ontologies. In this paper, to bridge this gap, we presented a knowledge discovery framework, the BioBroker, for grouping entities to facilitate the process of biomedical knowledge discovery in an intelligent way. Specifically, we developed an innovative knowledge discovery algorithm that combines a graph clustering method and an indexing technique to discovery knowledge patterns over a set of interlinked data sources in an efficient way. We have demonstrated capabilities of the BioBroker for query execution with a use case study on a subset of the Bio2RDF life science linked data.
BioBroker:异构生物医学本体和数据的知识发现框架
近年来,生物医学界引入了大量的本体。基于本体的实体识别知识发现已成为一个重要的研究领域,如何建立关联来连接单个本体或多个本体中的概念一直是一个有趣的问题。然而,由于生物医学大数据的指数级增长及其复杂的关联,以低效的动态方式检测实体之间的关键关联变得非常具有挑战性。因此,不断增长的关联检测需求与大量的生物医学本体之间存在着差距。在本文中,为了弥补这一差距,我们提出了一个知识发现框架,BioBroker,用于分组实体,以智能的方式促进生物医学知识发现的过程。具体而言,我们开发了一种创新的知识发现算法,该算法将图聚类方法和索引技术相结合,以有效地发现一组相互关联的数据源上的知识模式。我们通过对Bio2RDF生命科学关联数据子集的用例研究演示了BioBroker在查询执行方面的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信