{"title":"Burnside Chromatic Polynomials of Group-Invariant Graphs","authors":"J. White","doi":"10.7151/dmgt.2385","DOIUrl":null,"url":null,"abstract":"Abstract We introduce the Burnside chromatic polynomial of a graph that is invariant under a group action. This is a generalization of the Q-chromatic function Zaslavsky introduced for gain graphs. Given a group 𝕲 acting on a graph G and a 𝕲-set X, a proper X-coloring is a function with no monochromatic edge orbit. The set of proper colorings is a 𝕲-set which induces a polynomial function from the Burnside ring of 𝕲 to itself. In this paper, we study many properties of the Burnside chromatic polynomial, answering some questions of Zaslavsky.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We introduce the Burnside chromatic polynomial of a graph that is invariant under a group action. This is a generalization of the Q-chromatic function Zaslavsky introduced for gain graphs. Given a group 𝕲 acting on a graph G and a 𝕲-set X, a proper X-coloring is a function with no monochromatic edge orbit. The set of proper colorings is a 𝕲-set which induces a polynomial function from the Burnside ring of 𝕲 to itself. In this paper, we study many properties of the Burnside chromatic polynomial, answering some questions of Zaslavsky.