Promotion effect of nitrogen-doped functional carbon nanodots on the early growth stage of plants

IF 2.9 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qiong Chen, Xiaohua Ren, Yuqian Li, Beibei Liu, Xiuli Wang, J. Tu, Zhijiang Guo, G. Jin, G. Min, L. Ci
{"title":"Promotion effect of nitrogen-doped functional carbon nanodots on the early growth stage of plants","authors":"Qiong Chen, Xiaohua Ren, Yuqian Li, Beibei Liu, Xiuli Wang, J. Tu, Zhijiang Guo, G. Jin, G. Min, L. Ci","doi":"10.1093/OXFMAT/ITAB002","DOIUrl":null,"url":null,"abstract":"\n The objective of this paper is to study the effects of nitrogen-doped functional carbon nanodots (N-FCNs) on the early growth stage of plants. Hydrosoluble and biocompatible N-FCNs with high content of available N (ammonium and amino groups) and carboxyl groups are synthesized by a super green electrochemical method. N-FCNs universally express good eurytopic influence on different species of plants by inducing seeds germination, promoting root development, biomass accumulation, root cell length, chlorophyll level and transpiration of young seedlings. When functional carbon nanodots without N doping (FCNs) promote tomato and corn seeds germination rate by 92.4% and 76.2% maximally, N-FCNs could further improve the germination rate by about 17.0% and 25.5%. N-FCNs can even significantly raise the green vegetable (pakchoi) yield to 2.1 and 1.4 times on the 18th and 30th day. Leaf chlorophyll content is also increased to 1.36 and 1.55 times compared with FCNs treated group and the control group, respectively. The promotion effect of the nanodots is apparently depended on their composition, nanostructure, as well as plant species and age. Nanoscale structure and abundant hydrophilic functional groups can enable N-FCNs regulating the seed germination and plant growth by promoting the uptake and transportation of water and nutrients. The accumulation and transport of N-FCNs are investigated, which reveals N-FCNs are friendly to cells because they are absorbed and transported through nonprotoplast pathway in plant. As a result, N-FCNs have great potential for horticulture application as a biocompatible nano-medium to regulate both metabolism and early development of plants.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/OXFMAT/ITAB002","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OXFMAT/ITAB002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

The objective of this paper is to study the effects of nitrogen-doped functional carbon nanodots (N-FCNs) on the early growth stage of plants. Hydrosoluble and biocompatible N-FCNs with high content of available N (ammonium and amino groups) and carboxyl groups are synthesized by a super green electrochemical method. N-FCNs universally express good eurytopic influence on different species of plants by inducing seeds germination, promoting root development, biomass accumulation, root cell length, chlorophyll level and transpiration of young seedlings. When functional carbon nanodots without N doping (FCNs) promote tomato and corn seeds germination rate by 92.4% and 76.2% maximally, N-FCNs could further improve the germination rate by about 17.0% and 25.5%. N-FCNs can even significantly raise the green vegetable (pakchoi) yield to 2.1 and 1.4 times on the 18th and 30th day. Leaf chlorophyll content is also increased to 1.36 and 1.55 times compared with FCNs treated group and the control group, respectively. The promotion effect of the nanodots is apparently depended on their composition, nanostructure, as well as plant species and age. Nanoscale structure and abundant hydrophilic functional groups can enable N-FCNs regulating the seed germination and plant growth by promoting the uptake and transportation of water and nutrients. The accumulation and transport of N-FCNs are investigated, which reveals N-FCNs are friendly to cells because they are absorbed and transported through nonprotoplast pathway in plant. As a result, N-FCNs have great potential for horticulture application as a biocompatible nano-medium to regulate both metabolism and early development of plants.
氮掺杂功能碳纳米点对植物早期生长的促进作用
本文的目的是研究氮掺杂功能碳纳米点(N-FCNs)对植物早期生长阶段的影响。采用超绿色电化学方法合成了具有高含量有效氮(铵基和氨基)和羧基的水溶性生物相容性N-FCNs。N-FCNs通过诱导种子发芽、促进根系发育、生物量积累、根细胞长度、叶绿素水平和幼苗蒸腾作用,对不同种类的植物普遍表现出良好的光合效应。当无氮掺杂的功能性碳纳米点(FCNs)能最大限度地提高番茄和玉米种子的发芽率92.4%和76.2%时,N-FCNs能进一步提高发芽率17.0%和25.5%。与FCNs处理组和对照组相比,叶片叶绿素含量也分别增加到1.36和1.55倍。纳米点的促进作用显然取决于它们的组成、纳米结构以及植物种类和年龄。纳米结构和丰富的亲水官能团可以通过促进水和营养物质的吸收和运输来调节种子发芽和植物生长。研究了N-FCNs的积累和转运,揭示了N-FCN在植物中通过非繁殖途径被吸收和转运,对细胞是友好的。因此,N-FCNs作为一种生物相容性纳米介质,调节植物的新陈代谢和早期发育,在园艺应用中具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信