Jun‐Li Xu, C. Riccioli, A. Herrero-Langreo, A. Gowen
{"title":"Deep learning classifiers for near infrared spectral imaging: a tutorial","authors":"Jun‐Li Xu, C. Riccioli, A. Herrero-Langreo, A. Gowen","doi":"10.1255/jsi.2020.a19","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) has recently achieved considerable successes in a wide range of applications, such as speech recognition, machine translation and visual recognition. This tutorial provides guidelines and useful strategies to apply DL techniques to address pixel-wise classification of spectral images. A one-dimensional convolutional neural network (1-D CNN) is used to extract features from the spectral domain, which are subsequently used for classification. In contrast to conventional classification methods for spectral images that examine primarily the spectral context, a three-dimensional (3-D) CNN is applied to simultaneously extract spatial and spectral features to enhance classificationaccuracy. This tutorial paper explains, in a stepwise manner, how to develop 1-D CNN and 3-D CNN models to discriminate spectral imaging data in a food authenticity context. The example image data provided consists of three varieties of puffed cereals imaged in the NIR range (943–1643 nm). The tutorial is presented in the MATLAB environment and scripts and dataset used are provided. Starting from spectral image pre-processing (background removal and spectral pre-treatment), the typical steps encountered in development of CNN models are presented. The example dataset provided demonstrates that deep learning approaches can increase classification accuracy compared to conventional approaches, increasing the accuracy of the model tested on an independent image from 92.33 % using partial least squares-discriminant analysis to 99.4 % using 3-CNN model at pixel level. The paper concludes with a discussion on the challenges and suggestions in the application of DL techniques for spectral image classification.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2020.a19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 5
Abstract
Deep learning (DL) has recently achieved considerable successes in a wide range of applications, such as speech recognition, machine translation and visual recognition. This tutorial provides guidelines and useful strategies to apply DL techniques to address pixel-wise classification of spectral images. A one-dimensional convolutional neural network (1-D CNN) is used to extract features from the spectral domain, which are subsequently used for classification. In contrast to conventional classification methods for spectral images that examine primarily the spectral context, a three-dimensional (3-D) CNN is applied to simultaneously extract spatial and spectral features to enhance classificationaccuracy. This tutorial paper explains, in a stepwise manner, how to develop 1-D CNN and 3-D CNN models to discriminate spectral imaging data in a food authenticity context. The example image data provided consists of three varieties of puffed cereals imaged in the NIR range (943–1643 nm). The tutorial is presented in the MATLAB environment and scripts and dataset used are provided. Starting from spectral image pre-processing (background removal and spectral pre-treatment), the typical steps encountered in development of CNN models are presented. The example dataset provided demonstrates that deep learning approaches can increase classification accuracy compared to conventional approaches, increasing the accuracy of the model tested on an independent image from 92.33 % using partial least squares-discriminant analysis to 99.4 % using 3-CNN model at pixel level. The paper concludes with a discussion on the challenges and suggestions in the application of DL techniques for spectral image classification.
期刊介绍:
JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.