Time-harmonic diffuse optical tomography: Hölder stability of the derivatives of the optical properties of a medium at the boundary

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Jason Curran, Romina Gaburro, C. Nolan, E. Somersalo
{"title":"Time-harmonic diffuse optical tomography: Hölder stability of the derivatives of the optical properties of a medium at the boundary","authors":"Jason Curran, Romina Gaburro, C. Nolan, E. Somersalo","doi":"10.3934/ipi.2022044","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We address the inverse problem in Optical Tomography of stably determining the optical properties of an anisotropic medium <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\Omega\\subset\\mathbb{R}^n $\\end{document}</tex-math></inline-formula>, with <inline-formula><tex-math id=\"M4\">\\begin{document}$ n\\geq 3 $\\end{document}</tex-math></inline-formula>, under the so-called <i>diffusion approximation</i>. Assuming that the <i>scattering coefficient</i> <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mu_s $\\end{document}</tex-math></inline-formula> is known, we prove Hölder stability of the derivatives of any order of the <i>absorption coefficient</i> <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\mu_a $\\end{document}</tex-math></inline-formula> at the boundary <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\partial\\Omega $\\end{document}</tex-math></inline-formula> in terms of the measurements, in the time-harmonic case, where the anisotropic medium <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> is interrogated with an input field that is modulated with a fixed harmonic frequency <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\omega = \\frac{k}{c} $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M10\">\\begin{document}$ c $\\end{document}</tex-math></inline-formula> is the speed of light and <inline-formula><tex-math id=\"M11\">\\begin{document}$ k $\\end{document}</tex-math></inline-formula> is the wave number. The stability estimates are established under suitable conditions that include a range of variability for <inline-formula><tex-math id=\"M12\">\\begin{document}$ k $\\end{document}</tex-math></inline-formula> and they rely on the construction of singular solutions of the underlying forward elliptic system, which extend results obtained in J. Differential Equations 84 (2): 252-272 for the single elliptic equation and those obtained in Applicable Analysis DOI:<a href=\"http://dx.doi.org/10.1080/00036811.2020.1758314\" target=\"_blank\">10.1080/00036811.2020.1758314</a>, where a Lipschitz type stability estimate of <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\mu_a $\\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\"M14\">\\begin{document}$ \\partial\\Omega $\\end{document}</tex-math></inline-formula> was established in terms of the measurements.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We address the inverse problem in Optical Tomography of stably determining the optical properties of an anisotropic medium \begin{document}$ \Omega\subset\mathbb{R}^n $\end{document}, with \begin{document}$ n\geq 3 $\end{document}, under the so-called diffusion approximation. Assuming that the scattering coefficient \begin{document}$ \mu_s $\end{document} is known, we prove Hölder stability of the derivatives of any order of the absorption coefficient \begin{document}$ \mu_a $\end{document} at the boundary \begin{document}$ \partial\Omega $\end{document} in terms of the measurements, in the time-harmonic case, where the anisotropic medium \begin{document}$ \Omega $\end{document} is interrogated with an input field that is modulated with a fixed harmonic frequency \begin{document}$ \omega = \frac{k}{c} $\end{document}, where \begin{document}$ c $\end{document} is the speed of light and \begin{document}$ k $\end{document} is the wave number. The stability estimates are established under suitable conditions that include a range of variability for \begin{document}$ k $\end{document} and they rely on the construction of singular solutions of the underlying forward elliptic system, which extend results obtained in J. Differential Equations 84 (2): 252-272 for the single elliptic equation and those obtained in Applicable Analysis DOI:10.1080/00036811.2020.1758314, where a Lipschitz type stability estimate of \begin{document}$ \mu_a $\end{document} on \begin{document}$ \partial\Omega $\end{document} was established in terms of the measurements.

时谐漫射光学层析成像:Hölder在边界处介质光学性质导数的稳定性
We address the inverse problem in Optical Tomography of stably determining the optical properties of an anisotropic medium \begin{document}$ \Omega\subset\mathbb{R}^n $\end{document}, with \begin{document}$ n\geq 3 $\end{document}, under the so-called diffusion approximation. Assuming that the scattering coefficient \begin{document}$ \mu_s $\end{document} is known, we prove Hölder stability of the derivatives of any order of the absorption coefficient \begin{document}$ \mu_a $\end{document} at the boundary \begin{document}$ \partial\Omega $\end{document} in terms of the measurements, in the time-harmonic case, where the anisotropic medium \begin{document}$ \Omega $\end{document} is interrogated with an input field that is modulated with a fixed harmonic frequency \begin{document}$ \omega = \frac{k}{c} $\end{document}, where \begin{document}$ c $\end{document} is the speed of light and \begin{document}$ k $\end{document} is the wave number. The stability estimates are established under suitable conditions that include a range of variability for \begin{document}$ k $\end{document} and they rely on the construction of singular solutions of the underlying forward elliptic system, which extend results obtained in J. Differential Equations 84 (2): 252-272 for the single elliptic equation and those obtained in Applicable Analysis DOI:10.1080/00036811.2020.1758314, where a Lipschitz type stability estimate of \begin{document}$ \mu_a $\end{document} on \begin{document}$ \partial\Omega $\end{document} was established in terms of the measurements.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信