{"title":"Distribution of consensus in a broadcast-based consensus algorithm with random initial opinions","authors":"S. Shioda, Dai Kato","doi":"10.1017/jpr.2023.9","DOIUrl":null,"url":null,"abstract":"\n We study the distribution of the consensus formed by a broadcast-based consensus algorithm for cases in which the initial opinions of agents are random variables. We first derive two fundamental equations for the time evolution of the average opinion of agents. Using the derived equations, we then investigate the distribution of the consensus in the limit in which agents do not have any mutual trust, and show that the consensus without mutual trust among agents is in sharp contrast to the consensus with complete mutual trust in the statistical properties if the initial opinion of each agent is integrable. Next, we provide the formulation necessary to mathematically discuss the consensus in the limit in which the number of agents tends to infinity, and derive several results, including a central limit theorem concerning the consensus in this limit. Finally, we study the distribution of the consensus when the initial opinions of agents follow a stable distribution, and show that the consensus also follows a stable distribution in the limit in which the number of agents tends to infinity.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the distribution of the consensus formed by a broadcast-based consensus algorithm for cases in which the initial opinions of agents are random variables. We first derive two fundamental equations for the time evolution of the average opinion of agents. Using the derived equations, we then investigate the distribution of the consensus in the limit in which agents do not have any mutual trust, and show that the consensus without mutual trust among agents is in sharp contrast to the consensus with complete mutual trust in the statistical properties if the initial opinion of each agent is integrable. Next, we provide the formulation necessary to mathematically discuss the consensus in the limit in which the number of agents tends to infinity, and derive several results, including a central limit theorem concerning the consensus in this limit. Finally, we study the distribution of the consensus when the initial opinions of agents follow a stable distribution, and show that the consensus also follows a stable distribution in the limit in which the number of agents tends to infinity.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.