{"title":"Properties of Critical Points of the Dinew-Popovici Energy Functional","authors":"Erfan Soheil","doi":"10.1515/coma-2021-0144","DOIUrl":null,"url":null,"abstract":"Abstract Recently, Dinew and Popovici introduced and studied an energy functional F acting on the metrics in the Aeppli cohomology class of a Hermitian-symplectic metric and showed that in dimension 3 its critical points (if any) are Kähler. In this article we further investigate the critical points of this functional in higher dimensions and under holomorphic deformations. We first prove that being a critical point for F is a closed property under holomorphic deformations. We then show that the existence of a Kähler metric ω in the Aeppli cohomology class is an open property under holomorphic deformations. Furthermore, we consider the case when the (2, 0)-torsion form ρω 2, 0 of ω is ∂-exact and prove that this property is closed under holomorphic deformations. Finally, we give an explicit formula for the differential of F when the (2, 0)-torsion form ρω2, 0 is ∂-exact.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"9 1","pages":"355 - 369"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Recently, Dinew and Popovici introduced and studied an energy functional F acting on the metrics in the Aeppli cohomology class of a Hermitian-symplectic metric and showed that in dimension 3 its critical points (if any) are Kähler. In this article we further investigate the critical points of this functional in higher dimensions and under holomorphic deformations. We first prove that being a critical point for F is a closed property under holomorphic deformations. We then show that the existence of a Kähler metric ω in the Aeppli cohomology class is an open property under holomorphic deformations. Furthermore, we consider the case when the (2, 0)-torsion form ρω 2, 0 of ω is ∂-exact and prove that this property is closed under holomorphic deformations. Finally, we give an explicit formula for the differential of F when the (2, 0)-torsion form ρω2, 0 is ∂-exact.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.