{"title":"Cohomology of contact loci","authors":"Nero Budur, J. F. Bobadilla, Q. Lê, H. Nguyen","doi":"10.4310/jdg/1649953456","DOIUrl":null,"url":null,"abstract":"We construct a spectral sequence converging to the cohomology with compact support of the m-th contact locus of a complex polynomial. The first page is explicitly described in terms of a log resolution and coincides with the first page of McLean's spectral sequence converging to the Floer cohomology of the m-th iterate of the monodromy, when the polynomial has an isolated singularity. Inspired by this connection, we conjecture that if two germs of holomorphic functions are embedded topologically equivalent, then the Milnor fibers of the their tangent cones are homotopy equivalent.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1649953456","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
Abstract
We construct a spectral sequence converging to the cohomology with compact support of the m-th contact locus of a complex polynomial. The first page is explicitly described in terms of a log resolution and coincides with the first page of McLean's spectral sequence converging to the Floer cohomology of the m-th iterate of the monodromy, when the polynomial has an isolated singularity. Inspired by this connection, we conjecture that if two germs of holomorphic functions are embedded topologically equivalent, then the Milnor fibers of the their tangent cones are homotopy equivalent.
期刊介绍:
Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.