Design-based composite estimation of small proportions in small domains

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Andrius Čiginas
{"title":"Design-based composite estimation of small proportions in small domains","authors":"Andrius Čiginas","doi":"10.15388/namc.2023.28.32197","DOIUrl":null,"url":null,"abstract":"Traditional direct estimation methods are inefficient for domains of a survey population with small sample sizes. To estimate the domain proportions, we combine the direct estimators and the regression-synthetic estimators based on domain-level auxiliary information. For the case of small true proportions, we propose the design-based linear combination that is a robust alternative to the empirical best linear unbiased predictor (EBLUP) based on the Fay–Herriot model. \nWe imitate the Lithuanian Labor Force Survey, where we estimate the proportions of the unemployed and employed in municipalities. We show where the proposed design-based composition and estimator of its mean square error are competitive for EBLUP and its accuracy estimation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.32197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional direct estimation methods are inefficient for domains of a survey population with small sample sizes. To estimate the domain proportions, we combine the direct estimators and the regression-synthetic estimators based on domain-level auxiliary information. For the case of small true proportions, we propose the design-based linear combination that is a robust alternative to the empirical best linear unbiased predictor (EBLUP) based on the Fay–Herriot model. We imitate the Lithuanian Labor Force Survey, where we estimate the proportions of the unemployed and employed in municipalities. We show where the proposed design-based composition and estimator of its mean square error are competitive for EBLUP and its accuracy estimation.
基于设计的小域小比例复合估计
传统的直接估计方法对于小样本量的调查群体域是低效的。为了估计域比例,我们结合了直接估计量和基于域级辅助信息的回归综合估计量。对于真实比例较小的情况,我们提出了基于设计的线性组合,这是基于Fay-Herriot模型的经验最佳线性无偏预测器(EBLUP)的稳健替代方案。我们模仿立陶宛劳动力调查,在那里我们估计城市中失业者和就业者的比例。我们展示了提出的基于设计的组合及其均方误差估计器在EBLUP及其精度估计中的竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信