Closed-form expressions for bending and buckling of functionally graded nanobeams by the Laplace transform

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
I. Nazmul, Indronil Devnath
{"title":"Closed-form expressions for bending and buckling of functionally graded nanobeams by the Laplace transform","authors":"I. Nazmul, Indronil Devnath","doi":"10.1142/s2047684121500123","DOIUrl":null,"url":null,"abstract":"This paper presents analytical solutions for bending and buckling of nonlocal functionally graded (FG) Euler–Bernoulli (EB) nanobeams. Material gradation along the thickness direction could be defined by a power function (P-FG), a sigmoidal function (S-FG), and an exponential function (E-FG). Laplace transform is applied to the differential form of the equation of motion of the nonlocal elasticity theory. Closed-form expressions for bending deflection and critical buckling load of FG nanobeams are derived. Effects of material gradations as well as the nonlocal parameter are examined. It is found that bending displacements and critical buckling loads could be controlled by an appropriate choice of material distribution parameter for P-FG nanobeams. The presented results also demonstrate the influences of factors such as the choice of material gradation, power-law index, and nonlocal parameter on bending and buckling behavior.","PeriodicalId":45186,"journal":{"name":"International Journal of Computational Materials Science and Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2047684121500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents analytical solutions for bending and buckling of nonlocal functionally graded (FG) Euler–Bernoulli (EB) nanobeams. Material gradation along the thickness direction could be defined by a power function (P-FG), a sigmoidal function (S-FG), and an exponential function (E-FG). Laplace transform is applied to the differential form of the equation of motion of the nonlocal elasticity theory. Closed-form expressions for bending deflection and critical buckling load of FG nanobeams are derived. Effects of material gradations as well as the nonlocal parameter are examined. It is found that bending displacements and critical buckling loads could be controlled by an appropriate choice of material distribution parameter for P-FG nanobeams. The presented results also demonstrate the influences of factors such as the choice of material gradation, power-law index, and nonlocal parameter on bending and buckling behavior.
用拉普拉斯变换求解功能梯度纳米梁弯曲和屈曲的闭合表达式
本文给出了非局部功能梯度(FG)欧拉-伯努利(EB)纳米梁弯曲和屈曲的解析解。材料沿厚度方向的渐变可以用幂函数(P-FG)、S-FG (S-FG)和指数函数(E-FG)来定义。将拉普拉斯变换应用于非局部弹性理论运动方程的微分形式。导出了FG纳米梁弯曲挠度和临界屈曲载荷的封闭表达式。考察了材料级配和非局部参数的影响。研究发现,合理选择P-FG纳米梁的材料分布参数可以控制其弯曲位移和临界屈曲载荷。结果还表明,材料级配选择、幂律指数、非局部参数等因素对弯曲屈曲行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
15.40%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信