Lung segmentation method with dilated convolution based on VGG-16 network

IF 1.5 4区 医学 Q3 SURGERY
Lei Geng, Siqi Zhang, Jun Tong, Zhitao Xiao
{"title":"Lung segmentation method with dilated convolution based on VGG-16 network","authors":"Lei Geng, Siqi Zhang, Jun Tong, Zhitao Xiao","doi":"10.1080/24699322.2019.1649071","DOIUrl":null,"url":null,"abstract":"Abstract Lung cancer has become one of the life-threatening killers. Lung disease need to be assisted by CT images taken doctor's diagnosis, and the segmented CT image of the lung parenchyma is the first step to help doctor diagnosis. For the problem of accurately segmenting the lung parenchyma, this paper proposes a segmentation method based on the combination of VGG-16 and dilated convolution. First of all, we use the first three parts of VGG-16 network structure to convolution and pooling the input image. Secondly, using multiple sets of dilated convolutions make the network has a large enough receptive field. Finally, the multi-scale convolution features are fused, and each pixel is predicted using MLP to segment the parenchymal region. Experimental results were produced over state of the art on 137 images which key metrics Dice similarity coefficient (DSC) is 0.9867. Experimental results show that this method can effectively segment the lung parenchymal area, and compared to other conventional methods better.","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"24 1","pages":"27 - 33"},"PeriodicalIF":1.5000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24699322.2019.1649071","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2019.1649071","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 50

Abstract

Abstract Lung cancer has become one of the life-threatening killers. Lung disease need to be assisted by CT images taken doctor's diagnosis, and the segmented CT image of the lung parenchyma is the first step to help doctor diagnosis. For the problem of accurately segmenting the lung parenchyma, this paper proposes a segmentation method based on the combination of VGG-16 and dilated convolution. First of all, we use the first three parts of VGG-16 network structure to convolution and pooling the input image. Secondly, using multiple sets of dilated convolutions make the network has a large enough receptive field. Finally, the multi-scale convolution features are fused, and each pixel is predicted using MLP to segment the parenchymal region. Experimental results were produced over state of the art on 137 images which key metrics Dice similarity coefficient (DSC) is 0.9867. Experimental results show that this method can effectively segment the lung parenchymal area, and compared to other conventional methods better.
基于VGG-16网络的扩张卷积肺部分割方法
肺癌已成为危及生命的杀手之一。肺部疾病需要借助医生拍摄的CT图像辅助诊断,而肺实质的CT分割图像是帮助医生诊断的第一步。针对肺实质的准确分割问题,本文提出了一种基于VGG-16和扩张卷积相结合的肺实质分割方法。首先,我们利用VGG-16网络结构的前三部分对输入图像进行卷积和池化。其次,使用多组扩展卷积使网络具有足够大的接受域。最后,融合多尺度卷积特征,利用MLP对每个像素点进行预测,分割出实质区域。对137幅关键指标Dice相似系数(DSC)为0.9867的图像进行了实验。实验结果表明,该方法可以有效地分割肺实质区域,与其他常规方法相比效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Assisted Surgery
Computer Assisted Surgery Medicine-Surgery
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
10 weeks
期刊介绍: omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties. The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信