A NOTE ON COMMUTATIVITY OF PRIME NEAR RING WITH GENERALIZED β-DERIVATION

Abdul Rauf Khan, Khadija Mumtaz, Muhammad Mohsin Waqas
{"title":"A NOTE ON COMMUTATIVITY OF PRIME NEAR RING WITH GENERALIZED β-DERIVATION","authors":"Abdul Rauf Khan, Khadija Mumtaz, Muhammad Mohsin Waqas","doi":"10.26480/msmk.01.2021.16.19","DOIUrl":null,"url":null,"abstract":"In this paper, we prove commutativity of prime near rings by using the notion of β-derivations. Let M be a prime near ring. If there exist and two sided generalized β-derivation G associated with the non-zero two sided β-derivation on M, where is a homomorphism, satisfying the following conditions: G([p_1,q_1 ])=〖p_1〗^(u_1 ) [β(p_1 ),β(q_1)]〖p_1〗^(v_1 ) ∀ p_1,q_1 ϵ M G([p_1,q_1 ])=〖p_1〗^(u_1 ) [β(p_1 ),β(q_1)]〖p_1〗^(v_1 ) ∀ p_1,q_1 ϵ M Then M is a commutative ring.","PeriodicalId":32521,"journal":{"name":"Matrix Science Mathematic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Science Mathematic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/msmk.01.2021.16.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove commutativity of prime near rings by using the notion of β-derivations. Let M be a prime near ring. If there exist and two sided generalized β-derivation G associated with the non-zero two sided β-derivation on M, where is a homomorphism, satisfying the following conditions: G([p_1,q_1 ])=〖p_1〗^(u_1 ) [β(p_1 ),β(q_1)]〖p_1〗^(v_1 ) ∀ p_1,q_1 ϵ M G([p_1,q_1 ])=〖p_1〗^(u_1 ) [β(p_1 ),β(q_1)]〖p_1〗^(v_1 ) ∀ p_1,q_1 ϵ M Then M is a commutative ring.
关于素数近环的广义β-导数交换性的一个注记
本文利用β-导子的概念证明了素数近环的交换性。设M是素数近环。如果M上存在与非零双侧β-导数相关的双侧广义β-导数G,其中是同态,满足以下条件:G([p_1,q_1])=〖p_1〗^(u1)[β(p1),β(q_1)]〖p_1〕^(v_1)那么M是一个可交换环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信