Linear systems of Diophantine equations

IF 0.7 4区 数学 Q2 Mathematics
F. Szechtman
{"title":"Linear systems of Diophantine equations","authors":"F. Szechtman","doi":"10.13001/ela.2022.6695","DOIUrl":null,"url":null,"abstract":"Given free modules $M\\subseteq L$ of finite rank $f\\geq 1$ over a principal ideal domain $R$, we give a procedure to construct a basis of $L$ from a basis of $M$ assuming the invariant factors or elementary divisors of $L/M$ are known. Given a matrix $A\\in M_{m,n}(R)$ of rank $r$, its nullspace $L$ in $R^n$ is a free $R$-module of rank $f=n-r$. We construct a free submodule $M$ of $L$ of rank $f$ naturally associated with $A$ and whose basis is easily computable, we determine the invariant factors of the quotient module $L/M$ and then indicate how to apply the previous procedure to build a basis of $L$ from one of $M$.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6695","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Given free modules $M\subseteq L$ of finite rank $f\geq 1$ over a principal ideal domain $R$, we give a procedure to construct a basis of $L$ from a basis of $M$ assuming the invariant factors or elementary divisors of $L/M$ are known. Given a matrix $A\in M_{m,n}(R)$ of rank $r$, its nullspace $L$ in $R^n$ is a free $R$-module of rank $f=n-r$. We construct a free submodule $M$ of $L$ of rank $f$ naturally associated with $A$ and whose basis is easily computable, we determine the invariant factors of the quotient module $L/M$ and then indicate how to apply the previous procedure to build a basis of $L$ from one of $M$.
丢番图方程的线性系统
给定主理想域$R$上有限秩$f\geq 1$的自由模$M\subseteq L$,在假设$L/M$的不变因子或初等因子已知的情况下,给出了从$M$的基构造$L$的基的过程。给定一个秩为$r$的矩阵$A\in M_{m,n}(R)$,其在$R^n$中的零空间$L$是秩为$f=n-r$的自由$R$ -模块。我们构造了$L$的自由子模块$M$,其秩$f$与$A$自然相关,其基易于计算,我们确定了商模块$L/M$的不变因子,然后指出如何应用前面的过程从$M$的一个构建$L$的基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信