Carlos A. Castilla-Martinez, Bilge Coşkuner Fılız, Eddy Petit, Aysel Kantürk Fıgen, Umit B. Demirci
{"title":"Ammonia borane-based reactive mixture for trapping and converting carbon dioxide","authors":"Carlos A. Castilla-Martinez, Bilge Coşkuner Fılız, Eddy Petit, Aysel Kantürk Fıgen, Umit B. Demirci","doi":"10.1007/s11706-022-0610-z","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia borane (NH<sub>3</sub>BH<sub>3</sub>) is a reducing agent, able to trap and convert carbon dioxide. In the present work, we used a reactive solid consisting of a mixture of 90 wt.% of NH<sub>3</sub>BH<sub>3</sub> and 10 wt.% of palladium chloride, because the mixture reacts in a fast and exothermic way while releasing H<sub>2</sub> and generating catalytic Pd<sup>0</sup>. We took advantage of such reactivity to trap and convert CO<sub>2</sub> (7 bar), knowing besides that Pd<sup>0</sup> is a CO<sub>2</sub> hydrogenation catalyst. The operation (i.e. stage 1) was effective: BNH polymers, and B—O, C=O, C—O, and C—H bonds (like in BOCH<sub>3</sub> and BOOCH groups) were identified. We then (in stage 2) pyrolyzed the as-obtained solid at 1250 °C and washed it with water. In doing so, we isolated cyclotriboric acid H<sub>3</sub>B<sub>3</sub>O<sub>6</sub> (stemming from B<sub>2</sub>O<sub>3</sub> formed at 1250 °C), hexagonal boron nitride, and graphitic carbon. In conclusion, the stage 1 showed that CO<sub>2</sub> can be ‘trapped’ and converted, resulting in the formation of BOCH<sub>3</sub> and BOOCH groups (possible sources of methanol and formic acid), and the stage 2 showed that CO<sub>2</sub> transforms into graphitic carbon.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"16 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-022-0610-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Ammonia borane (NH3BH3) is a reducing agent, able to trap and convert carbon dioxide. In the present work, we used a reactive solid consisting of a mixture of 90 wt.% of NH3BH3 and 10 wt.% of palladium chloride, because the mixture reacts in a fast and exothermic way while releasing H2 and generating catalytic Pd0. We took advantage of such reactivity to trap and convert CO2 (7 bar), knowing besides that Pd0 is a CO2 hydrogenation catalyst. The operation (i.e. stage 1) was effective: BNH polymers, and B—O, C=O, C—O, and C—H bonds (like in BOCH3 and BOOCH groups) were identified. We then (in stage 2) pyrolyzed the as-obtained solid at 1250 °C and washed it with water. In doing so, we isolated cyclotriboric acid H3B3O6 (stemming from B2O3 formed at 1250 °C), hexagonal boron nitride, and graphitic carbon. In conclusion, the stage 1 showed that CO2 can be ‘trapped’ and converted, resulting in the formation of BOCH3 and BOOCH groups (possible sources of methanol and formic acid), and the stage 2 showed that CO2 transforms into graphitic carbon.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.