Modeling of Evaporation Rate for Peatland Fire Prevention Using Internet of Things (IoT) System

IF 3 3区 农林科学 Q2 ECOLOGY
Lu Li, A. Sali, N. Noordin, A. Ismail, F. Hashim, M. Rasid, M. Hanafi, S. M. Razali, Nurizana Amir Aziz, I. Sukaesih Sitanggang, L. Syaufina, A. Nurhayati
{"title":"Modeling of Evaporation Rate for Peatland Fire Prevention Using Internet of Things (IoT) System","authors":"Lu Li, A. Sali, N. Noordin, A. Ismail, F. Hashim, M. Rasid, M. Hanafi, S. M. Razali, Nurizana Amir Aziz, I. Sukaesih Sitanggang, L. Syaufina, A. Nurhayati","doi":"10.3390/fire6070272","DOIUrl":null,"url":null,"abstract":"Peatland refers to the peat soil and wetland biological environment growing on the surface. However, unexpected fires in peatlands frequently have brought severe greenhouse gas emissions and transboundary haze to Southeast Asia. To alleviate this issue, this paper first establishes an Internet of Things (IoT) system for peatland monitoring and management in the Raja Musa Forest Reserve (RMFR) in Selangor, Malaysia, and proposes a more efficient and low-complexity model for calculating the Duff Moisture Code (DMC) in peatland forests using groundwater level (GWL) and relative humidity. The feasibility of the IoT system is verified by comparing its data with those published by Malaysian Meteorological Department (METMalaysia). The proposed Linear_DMC Model and Linear_Mixed_DMC Model are compared with the Canadian Fire Weather Index (FWI) model, and their performance is evaluated using IoT measurement data and actual values published by METMalaysia. The results show that the correlation between the measured data of the IoT system and the data from METMalaysia within the same duration is larger than 0.84, with a mean square error (MSE) of 2.56, and a correlation of 0.91 can be achieved between calculated DMC using the proposed model and actual values. This finding is of great significance for predicting peatland forest fires in the field and providing the basis for fire prevention and decision making to improve disaster prevention and reduction.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire-Switzerland","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fire6070272","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peatland refers to the peat soil and wetland biological environment growing on the surface. However, unexpected fires in peatlands frequently have brought severe greenhouse gas emissions and transboundary haze to Southeast Asia. To alleviate this issue, this paper first establishes an Internet of Things (IoT) system for peatland monitoring and management in the Raja Musa Forest Reserve (RMFR) in Selangor, Malaysia, and proposes a more efficient and low-complexity model for calculating the Duff Moisture Code (DMC) in peatland forests using groundwater level (GWL) and relative humidity. The feasibility of the IoT system is verified by comparing its data with those published by Malaysian Meteorological Department (METMalaysia). The proposed Linear_DMC Model and Linear_Mixed_DMC Model are compared with the Canadian Fire Weather Index (FWI) model, and their performance is evaluated using IoT measurement data and actual values published by METMalaysia. The results show that the correlation between the measured data of the IoT system and the data from METMalaysia within the same duration is larger than 0.84, with a mean square error (MSE) of 2.56, and a correlation of 0.91 can be achieved between calculated DMC using the proposed model and actual values. This finding is of great significance for predicting peatland forest fires in the field and providing the basis for fire prevention and decision making to improve disaster prevention and reduction.
基于物联网系统的泥炭地防火蒸发速率建模
泥炭地是指生长在地表的泥炭土和湿地生物环境。然而,泥炭地的意外火灾经常给东南亚带来严重的温室气体排放和跨界雾霾。为了缓解这一问题,本文首先在马来西亚雪兰莪州的Raja Musa森林保护区(RMFR)建立了一个用于泥炭地监测和管理的物联网(IoT)系统,并提出了一个更高效、低复杂度的模型,用于利用地下水位(GWL)和相对湿度计算泥炭地森林中的达夫水分代码(DMC)。物联网系统的可行性通过将其数据与马来西亚气象局(METMalaysia)发布的数据进行比较来验证。将所提出的Linear_DMC模型和Linear_Mixed_DMC模型与加拿大火灾天气指数(FWI)模型进行了比较,并使用马来西亚气象局发布的物联网测量数据和实际值对其性能进行了评估。结果表明,在相同持续时间内,物联网系统的测量数据与马来西亚气象局的数据之间的相关性大于0.84,均方误差(MSE)为2.56,使用所提出的模型计算的DMC与实际值之间的相关性为0.91。这一发现对预测泥炭地森林火灾具有重要意义,为火灾预防和决策提供依据,提高防灾减灾水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire-Switzerland
Fire-Switzerland Multiple-
CiteScore
3.10
自引率
15.60%
发文量
182
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信