Heat Transfer Analysis of Damaged Shrouded High-Pressure Turbine Rotor Blades

IF 1.3 Q2 ENGINEERING, AEROSPACE
Mario Carta, T. Ghisu, S. Shahpar
{"title":"Heat Transfer Analysis of Damaged Shrouded High-Pressure Turbine Rotor Blades","authors":"Mario Carta, T. Ghisu, S. Shahpar","doi":"10.3390/ijtpp8030024","DOIUrl":null,"url":null,"abstract":"Due to the increasingly high turbine inlet temperatures, heat transfer analysis is now, more than ever, a vital part of the design and optimization of high-pressure turbine rotor blades of a modern jet engine. The present study aimed to find out how shape deviation and in-service deterioration affect heat exchange patterns on the rotor blade. The rotor geometries used for this analysis are represented by a set of high-resolution 3D structured light scans of blades with the same number of in-service hours. An automatic meshing technique was employed to generate high-resolution meshes directly on the scanned rotor geometries, which captured all the surface features with high fidelity. Steady-state 3D RANS flow simulations with a k-ω SST turbulence model were conducted on a one-and-a-half stage computational domain of the scanned geometries. First, the distribution of the heat transfer coefficient was calculated for each blade; then, a correlation was sought between the heat transfer coefficient and parametrized shape deviation, to assess the impact of each parameter on HTC levels.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp8030024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the increasingly high turbine inlet temperatures, heat transfer analysis is now, more than ever, a vital part of the design and optimization of high-pressure turbine rotor blades of a modern jet engine. The present study aimed to find out how shape deviation and in-service deterioration affect heat exchange patterns on the rotor blade. The rotor geometries used for this analysis are represented by a set of high-resolution 3D structured light scans of blades with the same number of in-service hours. An automatic meshing technique was employed to generate high-resolution meshes directly on the scanned rotor geometries, which captured all the surface features with high fidelity. Steady-state 3D RANS flow simulations with a k-ω SST turbulence model were conducted on a one-and-a-half stage computational domain of the scanned geometries. First, the distribution of the heat transfer coefficient was calculated for each blade; then, a correlation was sought between the heat transfer coefficient and parametrized shape deviation, to assess the impact of each parameter on HTC levels.
高压涡轮带冠损坏转子叶片的传热分析
由于涡轮入口温度越来越高,传热分析现在比以往任何时候都更重要的是设计和优化现代喷气发动机高压涡轮转子叶片。本研究旨在找出形状偏差和在役劣化对动叶换热模式的影响。用于此分析的转子几何形状由叶片的一组高分辨率3D结构光扫描表示,具有相同的使用小时数。采用自动网格划分技术直接在扫描的转子几何形状上生成高分辨率网格,以高保真度捕获所有表面特征。在扫描几何图形的一级半计算域上,采用k ω SST湍流模型进行了稳态三维RANS流动模拟。首先,计算了各叶片的换热系数分布;然后,寻求传热系数与参数化形状偏差之间的相关性,以评估每个参数对HTC水平的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
21.40%
发文量
29
审稿时长
11 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信