{"title":"Dual solutions for heat and mass transfer in chemically reacting radiative non-Newtonian fluid with aligned magnetic field","authors":"J. V. R. Reddy, V. Sugunamma, N. Sandeep","doi":"10.3329/JNAME.V14I1.25907","DOIUrl":null,"url":null,"abstract":"Through this paper we investigated the heat and mass transfer in chemically reacting radiative Casson fluid flow over a slandering/flat stretching sheet in a slip flow regime with aligned magnetic field. This study is carried out under the influence of non uniform heat source/sink. First we converted the governing equations of the flow into ordinary differential equations by making use of suitable similarity transformations. The obtained non-linear differential equations are solved numerically using Runge-Kutta based shooting technique. Further, graphical representation has been given to study the effects of various physical parameters on velocity, temperature and concentration fields. Also numerical computations has been carried out to investigate the influence of the physical parameters involved in the flow on skin friction, rate of heat and mass transfer coefficients. Through this investigation, it is observed that aligned angle, Casson parameter and velocity slip parameter have the tendency to control the velocity field. Also heat transfer rate in flat stretching sheet is higher than that of slendering stretching sheet. A good agreement of the present results with the existed literature has been observed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V14I1.25907","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V14I1.25907","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
Through this paper we investigated the heat and mass transfer in chemically reacting radiative Casson fluid flow over a slandering/flat stretching sheet in a slip flow regime with aligned magnetic field. This study is carried out under the influence of non uniform heat source/sink. First we converted the governing equations of the flow into ordinary differential equations by making use of suitable similarity transformations. The obtained non-linear differential equations are solved numerically using Runge-Kutta based shooting technique. Further, graphical representation has been given to study the effects of various physical parameters on velocity, temperature and concentration fields. Also numerical computations has been carried out to investigate the influence of the physical parameters involved in the flow on skin friction, rate of heat and mass transfer coefficients. Through this investigation, it is observed that aligned angle, Casson parameter and velocity slip parameter have the tendency to control the velocity field. Also heat transfer rate in flat stretching sheet is higher than that of slendering stretching sheet. A good agreement of the present results with the existed literature has been observed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.