Prediction of arsenic accumulation in a calcareous soil-wheat/maize rotation system with continuous amendment of sewage sludge

IF 2.3 3区 农林科学 Q1 AGRONOMY
H. Chang, Lin lin Huang, P. Song, L. Ru
{"title":"Prediction of arsenic accumulation in a calcareous soil-wheat/maize rotation system with continuous amendment of sewage sludge","authors":"H. Chang, Lin lin Huang, P. Song, L. Ru","doi":"10.17221/207/2022-pse","DOIUrl":null,"url":null,"abstract":"A potted experiment was conducted to explore the accumulation of arsenic (As) and predict the uptake of As by a wheat-maize rotation system in calcareous soil with different rates of sewage sludge (SS) amendment over two consecutive years. The SS amendment decreased the pH value of calcareous soil but increased the cation exchange capacity (CEC), calcium carbonate (CC), organic carbon (OC) and As accumulation in soil and crops with increasing SS addition. The As bioconcentration factor (BCF) of wheat and maize had a significant negative correlation with pH, CC and a significant positive correlation with OC. Soil CEC had a significant positive correlation only with the As BCF of wheat. Regression analysis showed that soil As, pH, OC, CC and CEC were good predictors of the As concentration in wheat/maize. The regression model for each part of the wheat/maize plants had a high model efficiency value and explained 67~88% of the variability. The R2 values of the wheat and maize grain prediction models were 79% and 76%, respectively. Thus, these models contribute to the study of As risk assessment for sewage sludge utilisation in calcareous soil-wheat/maize rotation systems.","PeriodicalId":20155,"journal":{"name":"Plant, Soil and Environment","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Soil and Environment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/207/2022-pse","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

A potted experiment was conducted to explore the accumulation of arsenic (As) and predict the uptake of As by a wheat-maize rotation system in calcareous soil with different rates of sewage sludge (SS) amendment over two consecutive years. The SS amendment decreased the pH value of calcareous soil but increased the cation exchange capacity (CEC), calcium carbonate (CC), organic carbon (OC) and As accumulation in soil and crops with increasing SS addition. The As bioconcentration factor (BCF) of wheat and maize had a significant negative correlation with pH, CC and a significant positive correlation with OC. Soil CEC had a significant positive correlation only with the As BCF of wheat. Regression analysis showed that soil As, pH, OC, CC and CEC were good predictors of the As concentration in wheat/maize. The regression model for each part of the wheat/maize plants had a high model efficiency value and explained 67~88% of the variability. The R2 values of the wheat and maize grain prediction models were 79% and 76%, respectively. Thus, these models contribute to the study of As risk assessment for sewage sludge utilisation in calcareous soil-wheat/maize rotation systems.
污泥连续改良对石灰性土壤-小麦/玉米轮作系统砷积累的预测
采用盆栽试验研究了连续2年不同污泥增效速率下小麦-玉米轮作制度对钙质土壤砷(As)积累的影响,并预测了其对砷的吸收。随着SS添加量的增加,土壤和作物的阳离子交换容量(CEC)、碳酸钙(CC)、有机碳(OC)和砷(As)积累量均增加。小麦和玉米As生物富集因子(BCF)与pH、CC呈极显著负相关,与OC呈极显著正相关。土壤CEC仅与小麦As BCF呈极显著正相关。回归分析表明,土壤As、pH、OC、CC和CEC是小麦/玉米As浓度的良好预测因子。小麦/玉米植株各部分的回归模型具有较高的模型效率值,可解释67~88%的变异。小麦和玉米籽粒预测模型的R2值分别为79%和76%。因此,这些模型有助于钙质土壤-小麦/玉米轮作系统中污水污泥利用的As风险评估研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Soil and Environment
Plant, Soil and Environment Agronomy, Soil Science-农艺学
CiteScore
4.80
自引率
4.20%
发文量
61
审稿时长
2.4 months
期刊介绍: Experimental biology, agronomy, natural resources, and the environment; plant development, growth and productivity, breeding and seed production, growing of crops and their quality, soil care, conservation and productivity; agriculture and environment interactions from the perspective of sustainable development. Articles are published in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信