Exploring the Learning Process and Effectiveness of STEM Education via Learning Behavior Analysis and the Interactive-Constructive- Active-Passive Framework
{"title":"Exploring the Learning Process and Effectiveness of STEM Education via Learning Behavior Analysis and the Interactive-Constructive- Active-Passive Framework","authors":"Hsin-Yu Lee, Yu-Ping Cheng, Wei-Sheng Wang, Chia-Ju Lin, Yueh-Min Huang","doi":"10.1177/07356331221136888","DOIUrl":null,"url":null,"abstract":"Given the inadequacy of assessed outcomes (e.g., final exam) and the importance of evaluating the learning process in STEM education, we use deep learning to develop the STEM learning behavior analysis system (SLBAS) to assess the behavior of learners in STEM education. We map learner behavior to the ICAP (interactive, constructive, active, passive) framework, helping instructors to better understand the learning process of learners. The results show that SLBAS exhibits high accuracy. Moreover, Cohen’s kappa coefficient between expert coding and SLBAS is high enough to support replacing expert coding in the observation method with SLBAS to recognize the learning process of learners during STEM activities. Finally, statistical analysis establishes a correlation between the learning process and learning effectiveness. The results of this study are in line with most previous studies, demonstrating that STEM education differs from traditional teacher-centered courses in that it helps learners to improve the process of knowledge construction with practice and hands-on opportunities rather than simply receiving knowledge passively.","PeriodicalId":47865,"journal":{"name":"Journal of Educational Computing Research","volume":"61 1","pages":"951 - 976"},"PeriodicalIF":4.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Computing Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1177/07356331221136888","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 4
Abstract
Given the inadequacy of assessed outcomes (e.g., final exam) and the importance of evaluating the learning process in STEM education, we use deep learning to develop the STEM learning behavior analysis system (SLBAS) to assess the behavior of learners in STEM education. We map learner behavior to the ICAP (interactive, constructive, active, passive) framework, helping instructors to better understand the learning process of learners. The results show that SLBAS exhibits high accuracy. Moreover, Cohen’s kappa coefficient between expert coding and SLBAS is high enough to support replacing expert coding in the observation method with SLBAS to recognize the learning process of learners during STEM activities. Finally, statistical analysis establishes a correlation between the learning process and learning effectiveness. The results of this study are in line with most previous studies, demonstrating that STEM education differs from traditional teacher-centered courses in that it helps learners to improve the process of knowledge construction with practice and hands-on opportunities rather than simply receiving knowledge passively.
期刊介绍:
The goal of this Journal is to provide an international scholarly publication forum for peer-reviewed interdisciplinary research into the applications, effects, and implications of computer-based education. The Journal features articles useful for practitioners and theorists alike. The terms "education" and "computing" are viewed broadly. “Education” refers to the use of computer-based technologies at all levels of the formal education system, business and industry, home-schooling, lifelong learning, and unintentional learning environments. “Computing” refers to all forms of computer applications and innovations - both hardware and software. For example, this could range from mobile and ubiquitous computing to immersive 3D simulations and games to computing-enhanced virtual learning environments.