Exchange Rate Forecasting: Nonlinear GARCH-NN Modeling Approach

Q1 Decision Sciences
Fahima Charef
{"title":"Exchange Rate Forecasting: Nonlinear GARCH-NN Modeling Approach","authors":"Fahima Charef","doi":"10.1007/s40745-022-00458-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper targets the description of the fusion of modeling techniques, such as the GARCH model and the Artificial Neural Network (ANN), for the sake of predicting financial series and precisely the series of the exchange rate in Tunisia, namely the USD/TND, the EUR/TND and the YEN/TND, for a daily frequency extending from 2015 through 2019. To our knowledge, this is the only paper that focuses on the descriptions of the fusion of modeling techniques (GARCH-NN) or hybridization method that applied on Tunisian currency (TND). The empirical results show that the hybrid model (GARCH-NN) outperforms and it is more efficient than the two used models. In fact, this method combines the advantages of two approaches in order to obtain a result more satisfactory for the expectations of the policy-makers in the exchange market in order to take their decisions. The results showed that the model proposed gives better results, so, can be an alternative of standard linear autoregressive model. This result has been joined by many empirical studies that confirm the quality and performance of this methodology, which researchers advise to be retained in all areas.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-022-00458-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This paper targets the description of the fusion of modeling techniques, such as the GARCH model and the Artificial Neural Network (ANN), for the sake of predicting financial series and precisely the series of the exchange rate in Tunisia, namely the USD/TND, the EUR/TND and the YEN/TND, for a daily frequency extending from 2015 through 2019. To our knowledge, this is the only paper that focuses on the descriptions of the fusion of modeling techniques (GARCH-NN) or hybridization method that applied on Tunisian currency (TND). The empirical results show that the hybrid model (GARCH-NN) outperforms and it is more efficient than the two used models. In fact, this method combines the advantages of two approaches in order to obtain a result more satisfactory for the expectations of the policy-makers in the exchange market in order to take their decisions. The results showed that the model proposed gives better results, so, can be an alternative of standard linear autoregressive model. This result has been joined by many empirical studies that confirm the quality and performance of this methodology, which researchers advise to be retained in all areas.

汇率预测:非线性GARCH-NN建模方法
本文旨在描述 GARCH 模型和人工神经网络(ANN)等建模技术的融合,以预测金融序列,准确地说是突尼斯的汇率序列,即美元/突尼斯第纳尔、欧元/突尼斯第纳尔和日元/突尼斯第纳尔,每日频率从 2015 年持续到 2019 年。据我们所知,这是唯一一篇重点描述突尼斯货币(TND)的建模技术(GARCH-NN)或混合方法融合的论文。实证结果表明,混合模型(GARCH-NN)的表现优于所使用的两种模型,而且效率更高。事实上,该方法结合了两种方法的优势,以获得更令人满意的结果,满足外汇市场决策者的预期,从而做出决策。结果表明,所提出的模型结果更好,可以替代标准线性自回归模型。许多实证研究都证实了这一方法的质量和性能,研究人员建议在所有领域都采用这一方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信