Beatty primes from fractional powers of almost-primes

Pub Date : 2023-05-11 DOI:10.1016/j.indag.2023.04.004
Victor Zhenyu Guo , Jinjiang Li , Min Zhang
{"title":"Beatty primes from fractional powers of almost-primes","authors":"Victor Zhenyu Guo ,&nbsp;Jinjiang Li ,&nbsp;Min Zhang","doi":"10.1016/j.indag.2023.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> be irrational and of finite type, <span><math><mrow><mi>β</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. In this paper, it is proved that for <span><math><mrow><mi>R</mi><mo>⩾</mo><mn>13</mn></mrow></math></span> and any fixed <span><math><mrow><mi>c</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, there exist infinitely many primes in the intersection of Beatty sequence <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> and <span><math><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>⌋</mo></mrow></math></span>, where <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> is an explicit constant depending on <span><math><mi>R</mi></math></span> herein, <span><math><mi>n</mi></math></span> is a natural number with at most <span><math><mi>R</mi></math></span> prime factors, counted with multiplicity.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772300040X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let α>1 be irrational and of finite type, βR. In this paper, it is proved that for R13 and any fixed c(1,cR), there exist infinitely many primes in the intersection of Beatty sequence Bα,β and nc, where cR is an explicit constant depending on R herein, n is a natural number with at most R prime factors, counted with multiplicity.

分享
查看原文
从几乎质数的分数次幂得到漂亮的质数
设α>1为无理数有限型,β∈R。在本文中,证明了对于R大于或等于13和任何固定的c∈(1,cR),在Beatty序列Bα,β和⌊nc⌋的交集中存在无限多个素数,其中cR是一个依赖于R的显式常数,n是一个自然数,最多有R个素数因子,用多重计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信