Hang Tan, Shengmao Lin, Xuefang Xu, Peiming Shi, Ruixiong Li, Shuying Wang
{"title":"Missing data recovery of wind speed in wind farms: A spatial-temporal tensor decomposition approach","authors":"Hang Tan, Shengmao Lin, Xuefang Xu, Peiming Shi, Ruixiong Li, Shuying Wang","doi":"10.1063/5.0144648","DOIUrl":null,"url":null,"abstract":"Missing data recovery plays a critical role in improving the data quality of wind speed in wind farms, and numerous methods have been proposed to address this issue. However, most of them suffer from the inability to fully use the information of known data, and thus, poor performance of recovery is usually achieved. In this paper, we propose a missing data recovery method based on spatial-temporal tensor decomposition. The proposed method rearranges the whole data based on discrete wavelet transform to construct a four-dimensional tensor of “site × week × scale × hour” for representing the spatial and temporal correlation of wind speed. A completeness tensor is estimated to impute missing data based on Tucker decomposition and the nonlinear conjugate gradient algorithm. The proposed method not only inherits the advantages of imputation methods based on the matrix pattern but also well mines the spatial and temporal inherent correlation of wind speed. Wind speed data of a wind farm are used to verify the effectiveness of the proposed method. The results show that the proposed method recovers missing data with much smaller mean absolute error and root mean square error and requires less effort for recovering missing data of fragmented or continuously, compared with the traditional methods.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0144648","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Missing data recovery plays a critical role in improving the data quality of wind speed in wind farms, and numerous methods have been proposed to address this issue. However, most of them suffer from the inability to fully use the information of known data, and thus, poor performance of recovery is usually achieved. In this paper, we propose a missing data recovery method based on spatial-temporal tensor decomposition. The proposed method rearranges the whole data based on discrete wavelet transform to construct a four-dimensional tensor of “site × week × scale × hour” for representing the spatial and temporal correlation of wind speed. A completeness tensor is estimated to impute missing data based on Tucker decomposition and the nonlinear conjugate gradient algorithm. The proposed method not only inherits the advantages of imputation methods based on the matrix pattern but also well mines the spatial and temporal inherent correlation of wind speed. Wind speed data of a wind farm are used to verify the effectiveness of the proposed method. The results show that the proposed method recovers missing data with much smaller mean absolute error and root mean square error and requires less effort for recovering missing data of fragmented or continuously, compared with the traditional methods.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy