{"title":"A CLASSIFICATION PROBLEM ON MAPPING CLASSES ON FIBER SPACES OVER TEICHMÜLLER SPACES","authors":"Yingqing Xiao, Chao Zhang","doi":"10.18910/72314","DOIUrl":null,"url":null,"abstract":"Let S̃ be an analytically finite Riemann surface which is equipped with a hyperbolic metric. Let S = S̃ \\{one point x}. There exists a natural projection Π of the x-pointed mapping class group Modx S onto the mapping class group Mod(S̃ ). In this paper, we classify elements in the fiber Π−1(χ) for an elliptic element χ ∈ Mod(S̃ ), and give a geometric interpretation for each element in Π−1(χ). We also prove that Π−1(tn a ◦ χ) or Π−1(tn a ◦ χ−1) consists of hyperbolic mapping classes provided that tn a ◦ χ and tn a ◦ χ−1 are hyperbolic, where a is a simple closed geodesic on S̃ and ta is the positive Dehn twist along a.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/72314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let S̃ be an analytically finite Riemann surface which is equipped with a hyperbolic metric. Let S = S̃ \{one point x}. There exists a natural projection Π of the x-pointed mapping class group Modx S onto the mapping class group Mod(S̃ ). In this paper, we classify elements in the fiber Π−1(χ) for an elliptic element χ ∈ Mod(S̃ ), and give a geometric interpretation for each element in Π−1(χ). We also prove that Π−1(tn a ◦ χ) or Π−1(tn a ◦ χ−1) consists of hyperbolic mapping classes provided that tn a ◦ χ and tn a ◦ χ−1 are hyperbolic, where a is a simple closed geodesic on S̃ and ta is the positive Dehn twist along a.