A CLASSIFICATION PROBLEM ON MAPPING CLASSES ON FIBER SPACES OVER TEICHMÜLLER SPACES

IF 0.5 4区 数学 Q3 MATHEMATICS
Yingqing Xiao, Chao Zhang
{"title":"A CLASSIFICATION PROBLEM ON MAPPING CLASSES ON FIBER SPACES OVER TEICHMÜLLER SPACES","authors":"Yingqing Xiao, Chao Zhang","doi":"10.18910/72314","DOIUrl":null,"url":null,"abstract":"Let S̃ be an analytically finite Riemann surface which is equipped with a hyperbolic metric. Let S = S̃ \\{one point x}. There exists a natural projection Π of the x-pointed mapping class group Modx S onto the mapping class group Mod(S̃ ). In this paper, we classify elements in the fiber Π−1(χ) for an elliptic element χ ∈ Mod(S̃ ), and give a geometric interpretation for each element in Π−1(χ). We also prove that Π−1(tn a ◦ χ) or Π−1(tn a ◦ χ−1) consists of hyperbolic mapping classes provided that tn a ◦ χ and tn a ◦ χ−1 are hyperbolic, where a is a simple closed geodesic on S̃ and ta is the positive Dehn twist along a.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"56 1","pages":"213-227"},"PeriodicalIF":0.5000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/72314","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let S̃ be an analytically finite Riemann surface which is equipped with a hyperbolic metric. Let S = S̃ \{one point x}. There exists a natural projection Π of the x-pointed mapping class group Modx S onto the mapping class group Mod(S̃ ). In this paper, we classify elements in the fiber Π−1(χ) for an elliptic element χ ∈ Mod(S̃ ), and give a geometric interpretation for each element in Π−1(χ). We also prove that Π−1(tn a ◦ χ) or Π−1(tn a ◦ χ−1) consists of hyperbolic mapping classes provided that tn a ◦ χ and tn a ◦ χ−1 are hyperbolic, where a is a simple closed geodesic on S̃ and ta is the positive Dehn twist along a.
teichmÜller空间上光纤空间上映射类的分类问题
设S是一个具有双曲度规的解析有限黎曼曲面。设S = S \{1点x}。x点映射类组Modx S在映射类组Mod(S)上存在一个自然投影Π。本文对椭圆元χ∈Mod(S)的光纤Π−1(χ)中的元素进行了分类,并给出了Π−1(χ)中每个元素的几何解释。我们还证明Π−1(tn a◦χ)或Π−1(tn a◦χ−1)由双曲映射类组成,条件是tn a◦χ和tn a◦χ−1是双曲的,其中a是S n上的简单封闭测地线,ta是沿a的正Dehn扭转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信