Deep Prediction of Investor Interest: a Supervised Clustering Approach

IF 0.3 Q4 BUSINESS, FINANCE
Baptiste Barreau, Laurent Carlier, D. Challet
{"title":"Deep Prediction of Investor Interest: a Supervised Clustering Approach","authors":"Baptiste Barreau, Laurent Carlier, D. Challet","doi":"10.3233/AF-200296","DOIUrl":null,"url":null,"abstract":"We propose a novel deep learning architecture suitable for the prediction of investor interest for a given asset in a given time frame. This architecture performs both investor clustering and modelling at the same time. We first verify its superior performance on a synthetic scenario inspired by real data and then apply it to two real-world databases, a publicly available dataset about the position of investors in Spanish stock market and proprietary data from BNP Paribas Corporate and Institutional Banking.1,2","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"8 1","pages":"77-89"},"PeriodicalIF":0.3000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/AF-200296","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/AF-200296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel deep learning architecture suitable for the prediction of investor interest for a given asset in a given time frame. This architecture performs both investor clustering and modelling at the same time. We first verify its superior performance on a synthetic scenario inspired by real data and then apply it to two real-world databases, a publicly available dataset about the position of investors in Spanish stock market and proprietary data from BNP Paribas Corporate and Institutional Banking.1,2
投资者兴趣的深度预测:一种监督聚类方法
我们提出了一种新的深度学习架构,适用于在给定时间框架内预测投资者对给定资产的兴趣。该体系结构同时执行投资者聚类和建模。我们首先在一个由真实数据启发的合成场景上验证了它的卓越性能,然后将其应用于两个真实世界的数据库,一个是关于西班牙股市投资者头寸的公开数据集,另一个是来自法国巴黎银行公司和机构银行业务的专有数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmic Finance
Algorithmic Finance BUSINESS, FINANCE-
CiteScore
0.40
自引率
0.00%
发文量
6
期刊介绍: Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信