Experimental study on the effect of fines content on the frost swelling characteristics of coarse-grained soil in canal base under open system

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Miao Wang, Ming Hai, Anshuang Su, S. Meng, Hailong Mu, Yanxiu Guo
{"title":"Experimental study on the effect of fines content on the frost swelling characteristics of coarse-grained soil in canal base under open system","authors":"Miao Wang, Ming Hai, Anshuang Su, S. Meng, Hailong Mu, Yanxiu Guo","doi":"10.1115/1.4062931","DOIUrl":null,"url":null,"abstract":"\n Engineering usually considers coarse-grained soils as nonfrost swelling soils, but serious frost swelling still occurs in coarse-grained canal bases, which is directly related to the recharge conditions and the fine particle content in the soil. Little attention is currently paid to the effect of different fine particle contents on coarse-grained soil frost swelling, especially after the fine particle admixture content exceeds 16%. This paper considers the characteristics of coarse-grained soils in water conservancy projects with fines content between 0% and 50%. The coarse-grained soils with 5%, 15%, 25%, 35% and 45% fines content were designed for freezing and swelling tests. The evolution of temperature and moisture fields and the amount of freezing and swelling of coarse-grained soils during the freezing process were studied by using servo-type freezing and swelling and thawing tester. The experimental results show that the cooling process of soil samples can be divided into a rapid cooling stage, a slow cooling stage and a freezing stabilization stage. The cooling rate and the frost heave amount with increasing fines content showed a trend of first increasing and then decreasing.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062931","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering usually considers coarse-grained soils as nonfrost swelling soils, but serious frost swelling still occurs in coarse-grained canal bases, which is directly related to the recharge conditions and the fine particle content in the soil. Little attention is currently paid to the effect of different fine particle contents on coarse-grained soil frost swelling, especially after the fine particle admixture content exceeds 16%. This paper considers the characteristics of coarse-grained soils in water conservancy projects with fines content between 0% and 50%. The coarse-grained soils with 5%, 15%, 25%, 35% and 45% fines content were designed for freezing and swelling tests. The evolution of temperature and moisture fields and the amount of freezing and swelling of coarse-grained soils during the freezing process were studied by using servo-type freezing and swelling and thawing tester. The experimental results show that the cooling process of soil samples can be divided into a rapid cooling stage, a slow cooling stage and a freezing stabilization stage. The cooling rate and the frost heave amount with increasing fines content showed a trend of first increasing and then decreasing.
开放体系下细粒含量对渠底粗粒土冻胀特性影响的试验研究
工程上通常将粗粒土视为非冻胀土,但粗粒渠基仍会发生严重的冻胀,这与补给条件和土中细粒含量直接相关。不同细颗粒掺量对粗粒土霜胀的影响,特别是细颗粒掺量超过16%后,目前研究较少。本文研究了细粒含量为0% ~ 50%的水利工程中粗粒土的特点。设计细粒含量分别为5%、15%、25%、35%和45%的粗粒土进行冻结和膨胀试验。采用伺服式冻胀融试验装置,研究了粗粒土在冻结过程中温度、水分场的演变及冻胀量。试验结果表明,土样的冷却过程可分为快速冷却阶段、缓慢冷却阶段和冻结稳定阶段。随着细粒含量的增加,冷却速率和冻胀量呈现先增大后减小的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
6.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events. Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信