A cluster analysis of harmony in the McGill Billboard dataset

IF 0.6 0 MUSIC
Kris Shaffer, Esther Vasiete, Brandon Jacquez, A. Davis, D. Escalante, Calvin Hicks, Joshua McCann, Camille Noufi, Paul Salminen
{"title":"A cluster analysis of harmony in the McGill Billboard dataset","authors":"Kris Shaffer, Esther Vasiete, Brandon Jacquez, A. Davis, D. Escalante, Calvin Hicks, Joshua McCann, Camille Noufi, Paul Salminen","doi":"10.18061/emr.v14i3-4.5576","DOIUrl":null,"url":null,"abstract":"We set out to perform a cluster analysis of harmonic structures (specifically, chord-to-chord transitions) in the McGill Billboard dataset, to determine whether there is evidence of multiple harmonic grammars and practices in the corpus, and if so, what the optimal division of songs, according to those harmonic grammars, is. We define optimal as providing meaningful, specific information about the harmonic practices of songs in the cluster, but being general enough to be used as a guide to songwriting and predictive listening. We test two hypotheses in our cluster analysis — first that 5–9 clusters would be optimal, based on the work of Walter Everett (2004), and second that 15 clusters would be optimal, based on a set of user-generated genre tags reported by Hendrik Schreiber (2015). We subjected the harmonic structures for each song in the corpus to a K-means cluster analysis. We conclude that the optimal clustering solution is likely to be within the 5–8 cluster range. We also propose that a map of cluster types emerging as the number of clusters increases from one to eight constitutes a greater aid to our understanding of how various harmonic practices, styles, and sub-styles comprise the McGill Billboard dataset.","PeriodicalId":44128,"journal":{"name":"Empirical Musicology Review","volume":"14 1","pages":"146-162"},"PeriodicalIF":0.6000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Musicology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18061/emr.v14i3-4.5576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 3

Abstract

We set out to perform a cluster analysis of harmonic structures (specifically, chord-to-chord transitions) in the McGill Billboard dataset, to determine whether there is evidence of multiple harmonic grammars and practices in the corpus, and if so, what the optimal division of songs, according to those harmonic grammars, is. We define optimal as providing meaningful, specific information about the harmonic practices of songs in the cluster, but being general enough to be used as a guide to songwriting and predictive listening. We test two hypotheses in our cluster analysis — first that 5–9 clusters would be optimal, based on the work of Walter Everett (2004), and second that 15 clusters would be optimal, based on a set of user-generated genre tags reported by Hendrik Schreiber (2015). We subjected the harmonic structures for each song in the corpus to a K-means cluster analysis. We conclude that the optimal clustering solution is likely to be within the 5–8 cluster range. We also propose that a map of cluster types emerging as the number of clusters increases from one to eight constitutes a greater aid to our understanding of how various harmonic practices, styles, and sub-styles comprise the McGill Billboard dataset.
麦吉尔公告牌数据集中的和声聚类分析
我们着手对McGill Billboard数据集中的和声结构(特别是和弦到和弦的过渡)进行聚类分析,以确定语料库中是否存在多种和声语法和实践的证据,如果存在,根据这些和声语法,歌曲的最佳划分是什么。我们将最优定义为提供关于集群中歌曲的和声实践的有意义的,具体的信息,但足够普遍,可以用作歌曲创作和预测聆听的指南。我们在聚类分析中测试了两个假设——第一,基于Walter Everett(2004)的研究,5-9个聚类是最佳的;第二,基于Hendrik Schreiber(2015)报告的一组用户生成的类型标签,15个聚类是最佳的。我们对语料库中每首歌曲的和声结构进行k均值聚类分析。我们得出结论,最优聚类解决方案可能在5-8个聚类范围内。我们还建议,当集群数量从一个增加到八个时,集群类型的地图将更有助于我们理解各种谐波实践、风格和子风格是如何组成麦吉尔公告牌数据集的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信