{"title":"A dynamic target volatility strategy for asset allocation using artificial neural networks","authors":"Youngmin Kim, D. Enke","doi":"10.1080/0013791X.2018.1461287","DOIUrl":null,"url":null,"abstract":"ABSTRACT A challenge to developing data-driven approaches in finance and trading is the limited availability of data because periods of instability, such as during financial market crises, are relatively rare. This study applies a stability-oriented approach (SOA) based on statistical tests to compare data for the current period to a past set of data for a stable period, providing higher reliability due to a more abundant source of data. Based on an SOA, this study uses an artificial neural network (ANN), which is one of the commonly applied machine learning algorithms, for simultaneously forecasting the volatility and classifying the level of market stability. In addition, this study develops a dynamic target volatility strategy for asset allocation using an ANN to enhance the ability of a target volatility strategy that is established for automatically allocating capital between a risky asset and a risk-free cash position. In order to examine the impact of the proposed strategy, the results are compared to the buy-and-hold strategy, the static asset allocation strategy, and the conventional target volatility strategy using different volatility forecasting methodologies. An empirical case study of the proposed strategy is simulated in both the Korean and U.S. stock markets.","PeriodicalId":49210,"journal":{"name":"Engineering Economist","volume":"63 1","pages":"273 - 290"},"PeriodicalIF":1.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0013791X.2018.1461287","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Economist","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/0013791X.2018.1461287","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 6
Abstract
ABSTRACT A challenge to developing data-driven approaches in finance and trading is the limited availability of data because periods of instability, such as during financial market crises, are relatively rare. This study applies a stability-oriented approach (SOA) based on statistical tests to compare data for the current period to a past set of data for a stable period, providing higher reliability due to a more abundant source of data. Based on an SOA, this study uses an artificial neural network (ANN), which is one of the commonly applied machine learning algorithms, for simultaneously forecasting the volatility and classifying the level of market stability. In addition, this study develops a dynamic target volatility strategy for asset allocation using an ANN to enhance the ability of a target volatility strategy that is established for automatically allocating capital between a risky asset and a risk-free cash position. In order to examine the impact of the proposed strategy, the results are compared to the buy-and-hold strategy, the static asset allocation strategy, and the conventional target volatility strategy using different volatility forecasting methodologies. An empirical case study of the proposed strategy is simulated in both the Korean and U.S. stock markets.
Engineering EconomistENGINEERING, INDUSTRIAL-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
2.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍:
The Engineering Economist is a refereed journal published jointly by the Engineering Economy Division of the American Society of Engineering Education (ASEE) and the Institute of Industrial and Systems Engineers (IISE). The journal publishes articles, case studies, surveys, and book and software reviews that represent original research, current practice, and teaching involving problems of capital investment.
The journal seeks submissions in a number of areas, including, but not limited to: capital investment analysis, financial risk management, cost estimation and accounting, cost of capital, design economics, economic decision analysis, engineering economy education, research and development, and the analysis of public policy when it is relevant to the economic investment decisions made by engineers and technology managers.