Maple application for structural identifiability analysis of ODE models

IF 0.4 Q4 MATHEMATICS, APPLIED
Ilia Ilmer, A. Ovchinnikov, G. Pogudin
{"title":"Maple application for structural identifiability analysis of ODE models","authors":"Ilia Ilmer, A. Ovchinnikov, G. Pogudin","doi":"10.1145/3493492.3493497","DOIUrl":null,"url":null,"abstract":"Structural identifiability properties of models of ordinary differential equations help one assess if the parameter's value can be recovered from experimental data. This theoretical property can be queried without the need for data collection and is determined with help of differential algebraic tools. We present a web-based Structural Identifiability Toolbox that rigorously uncovers identifiability properties of individual parameters of ODE systems as well as their functions (also called identifiable combinations) using the apparatus of differential algebra. The application requires no installation and is readily available at https://maple.cloud/app/6509768948056064/","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"55 1","pages":"49 - 53"},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3493492.3493497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Structural identifiability properties of models of ordinary differential equations help one assess if the parameter's value can be recovered from experimental data. This theoretical property can be queried without the need for data collection and is determined with help of differential algebraic tools. We present a web-based Structural Identifiability Toolbox that rigorously uncovers identifiability properties of individual parameters of ODE systems as well as their functions (also called identifiable combinations) using the apparatus of differential algebra. The application requires no installation and is readily available at https://maple.cloud/app/6509768948056064/
用于ODE模型结构可识别性分析的Maple应用程序
常微分方程模型的结构可辨识性有助于评估参数值是否可以从实验数据中恢复。这种理论性质可以在不需要收集数据的情况下查询,并借助微分代数工具确定。我们提出了一个基于网络的结构可识别性工具箱,它严格地揭示了ODE系统的单个参数及其函数(也称为可识别组合)的可识别性属性。该应用程序不需要安装,可以在https://maple.cloud/app/6509768948056064/上随时获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信