Toeplitz operators and skew Carleson measures for weighted Bergman spaces on strongly pseudoconvex domains

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Abate, Samuele Mongodi, Jasmin Raissy
{"title":"Toeplitz operators and skew Carleson measures for weighted Bergman spaces on strongly pseudoconvex domains","authors":"M. Abate, Samuele Mongodi, Jasmin Raissy","doi":"10.7900/jot.2019jun03.2260","DOIUrl":null,"url":null,"abstract":"In this paper we study mapping properties of Toeplitz-like operators on weighted Bergman spaces of bounded strongly pseudconvex domains in $\\mathbb{C}^n$. In particular we prove that a Toeplitz operator built using as kernel a weighted Bergman kernel of weight $\\beta$ and integrating against a measure $\\mu$ maps continuously (when $\\beta$ is large enough) a weighted Bergman space $A^{p_1}_{\\alpha_1}(D)$ into a weighted Bergman space $A^{p_2}_{\\alpha_2}(D)$ if and only if $\\mu$ is a $(\\lambda,\\gamma)$-skew Carleson measure, where $\\lambda=1+\\frac{1}{p_1}-\\frac{1}{p_2}$ and $\\gamma=\\frac{1}{\\lambda}\\left(\\beta+\\frac{\\alpha_1}{p_1}-\\frac{\\alpha_2}{p_2}\\right)$. This theorem generalizes results obtained by Pau and Zhao on the unit ball, and extends and makes more precise results obtained by Abate, Raissy and Saracco on a smaller class of Toeplitz operators on bounded strongly pseudoconvex domains.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019jun03.2260","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we study mapping properties of Toeplitz-like operators on weighted Bergman spaces of bounded strongly pseudconvex domains in $\mathbb{C}^n$. In particular we prove that a Toeplitz operator built using as kernel a weighted Bergman kernel of weight $\beta$ and integrating against a measure $\mu$ maps continuously (when $\beta$ is large enough) a weighted Bergman space $A^{p_1}_{\alpha_1}(D)$ into a weighted Bergman space $A^{p_2}_{\alpha_2}(D)$ if and only if $\mu$ is a $(\lambda,\gamma)$-skew Carleson measure, where $\lambda=1+\frac{1}{p_1}-\frac{1}{p_2}$ and $\gamma=\frac{1}{\lambda}\left(\beta+\frac{\alpha_1}{p_1}-\frac{\alpha_2}{p_2}\right)$. This theorem generalizes results obtained by Pau and Zhao on the unit ball, and extends and makes more precise results obtained by Abate, Raissy and Saracco on a smaller class of Toeplitz operators on bounded strongly pseudoconvex domains.
强伪凸域上加权Bergman空间的Toeplitz算子和偏斜Carleson测度
本文研究了$\mathbb{C}^n$中有界强伪凸域的加权Bergman空间上Toeplitz类算子的映射性质。特别地,我们证明了使用权重为$\beta$的加权Bergman核作为核并且针对度量$\mu$进行积分的Toeplitz算子连续映射(当$\beta足够大时)加权Bergman-space$a^{p_1}_{\alpha_1}(D)$到加权Bergman空间$a^{p_2}_{\alpha_2}(D)$当且仅当$\mu$是$(\lambda,\gamma)$偏斜Carleson测度,其中$\lambda=1+\frac{1}{p_1}-\frac{1}{p_2}$和$\gamma=\frac{1}{\lambda}\left(\beta+\frac{p_1}-\frac{\alpha_2}{p_2}\right)$。该定理推广了Pau和赵在单位球上的结果,并推广和使得Abate、Raissy和Saracco在有界强伪凸域上的一类Toeplitz算子上的结果更加精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信