Conformal Prediction Credibility Intervals

IF 1.4 Q3 BUSINESS, FINANCE
Liang Hong
{"title":"Conformal Prediction Credibility Intervals","authors":"Liang Hong","doi":"10.1080/10920277.2022.2123364","DOIUrl":null,"url":null,"abstract":"In the predictive modeling context, the credibility estimator is a point predictor; it is easy to calculate and avoids the model misspecification risk asymptotically, but it provides no quantification of inferential uncertainty. A Bayesian prediction interval quantifies uncertainty of prediction, but it often requires expensive computation and is subject to model misspecification risk even asymptotically. Is there a way to get the best of both worlds? Based on a powerful machine learning strategy called conformal prediction, this article proposes a method that converts the credibility estimator into a conformal prediction credibility interval. This conformal prediction credibility interval contains the credibility estimator, has computational simplicity, and guarantees finite-sample validity at a pre-assigned coverage level.","PeriodicalId":46812,"journal":{"name":"North American Actuarial Journal","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2022.2123364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the predictive modeling context, the credibility estimator is a point predictor; it is easy to calculate and avoids the model misspecification risk asymptotically, but it provides no quantification of inferential uncertainty. A Bayesian prediction interval quantifies uncertainty of prediction, but it often requires expensive computation and is subject to model misspecification risk even asymptotically. Is there a way to get the best of both worlds? Based on a powerful machine learning strategy called conformal prediction, this article proposes a method that converts the credibility estimator into a conformal prediction credibility interval. This conformal prediction credibility interval contains the credibility estimator, has computational simplicity, and guarantees finite-sample validity at a pre-assigned coverage level.
保形预测可信区间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
14.30%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信