John Caddell, Matthew Dabkowski, Patrick J. Driscoll, Patrick DuBois
{"title":"Improving stochastic analysis for tradeoffs in multi-criteria value models","authors":"John Caddell, Matthew Dabkowski, Patrick J. Driscoll, Patrick DuBois","doi":"10.1002/mcda.1717","DOIUrl":null,"url":null,"abstract":"<p>In multi-criteria value modelling (MCVM), uncertainty clouds decision making by complicating choices that inevitably must be made among an offering of competing alternatives. In stochastic MCVM settings involving value versus cost (risk) tradeoffs, exposing and communicating ramifications that choice instigates becomes increasingly difficult directly in response to the increased sophistication of mathematical methods needed to distinguish between alternatives, leaving the decision maker potentially unprepared for eventual opportunity or disaster. This article introduces an approach called <i>realization analysis</i> that leverages stochastic simulation, probability theory and tradespace geometry to estimate full spectrum outcome probabilities in an effort to enrich decision making and reduce the potential for surprise or regret, demonstrating its effectiveness when competing alternatives are tightly co-mingled in their potential realizations causing issues for traditional stochastic dominance methods. The approach is surprisingly straightforward to implement, with results easily communicated to technical and non-technical decision makers. A brief acquisition case study involving competing alternatives is presented to illustrate how this approach offers advantages for multi-criteria decision analysis practice.</p>","PeriodicalId":45876,"journal":{"name":"Journal of Multi-Criteria Decision Analysis","volume":"27 5-6","pages":"304-317"},"PeriodicalIF":1.9000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mcda.1717","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multi-Criteria Decision Analysis","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mcda.1717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
In multi-criteria value modelling (MCVM), uncertainty clouds decision making by complicating choices that inevitably must be made among an offering of competing alternatives. In stochastic MCVM settings involving value versus cost (risk) tradeoffs, exposing and communicating ramifications that choice instigates becomes increasingly difficult directly in response to the increased sophistication of mathematical methods needed to distinguish between alternatives, leaving the decision maker potentially unprepared for eventual opportunity or disaster. This article introduces an approach called realization analysis that leverages stochastic simulation, probability theory and tradespace geometry to estimate full spectrum outcome probabilities in an effort to enrich decision making and reduce the potential for surprise or regret, demonstrating its effectiveness when competing alternatives are tightly co-mingled in their potential realizations causing issues for traditional stochastic dominance methods. The approach is surprisingly straightforward to implement, with results easily communicated to technical and non-technical decision makers. A brief acquisition case study involving competing alternatives is presented to illustrate how this approach offers advantages for multi-criteria decision analysis practice.
期刊介绍:
The Journal of Multi-Criteria Decision Analysis was launched in 1992, and from the outset has aimed to be the repository of choice for papers covering all aspects of MCDA/MCDM. The journal provides an international forum for the presentation and discussion of all aspects of research, application and evaluation of multi-criteria decision analysis, and publishes material from a variety of disciplines and all schools of thought. Papers addressing mathematical, theoretical, and behavioural aspects are welcome, as are case studies, applications and evaluation of techniques and methodologies.