On the Spherical Slice Transform

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
B. Rubin
{"title":"On the Spherical Slice Transform","authors":"B. Rubin","doi":"10.1142/s021953052150024x","DOIUrl":null,"url":null,"abstract":"We study the spherical slice transform which assigns to a function on the $n$-dimensional unit sphere the integrals of that function over cross-sections of the sphere by $k$-dimensional affine planes passing through the north pole. These transforms are well known when $k=n$. We consider all $1< k < n+1$ and obtain an explicit formula connecting the spherical slice transform with the classical Radon-John transform over $(k-1)$-dimensional planes in the $n$-dimensional Euclidean space. Using this connection, known facts for the Radon-John transform, like inversion formulas, support theorem, representation on zonal functions, and others, can be reformulated for the spherical slice transform.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021953052150024x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

We study the spherical slice transform which assigns to a function on the $n$-dimensional unit sphere the integrals of that function over cross-sections of the sphere by $k$-dimensional affine planes passing through the north pole. These transforms are well known when $k=n$. We consider all $1< k < n+1$ and obtain an explicit formula connecting the spherical slice transform with the classical Radon-John transform over $(k-1)$-dimensional planes in the $n$-dimensional Euclidean space. Using this connection, known facts for the Radon-John transform, like inversion formulas, support theorem, representation on zonal functions, and others, can be reformulated for the spherical slice transform.
关于球片变换
我们研究了一个函数在n维单位球面上通过k维仿射平面经过北极在球面横截面上的积分的球切片变换。当k=n时,这些变换是众所周知的。我们考虑所有$1< k < n+1$,得到了在$n$维欧几里德空间中$(k-1)$维平面上的球面片变换与经典Radon-John变换之间的显式公式。利用这种联系,Radon-John变换的已知事实,如反演公式、支持定理、区域函数的表示等,可以在球片变换中重新表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信