{"title":"Uniform well-posedness and stability for fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces","authors":"A. E. Baraka, Mohamed Toumlilin","doi":"10.30538/PSRP-OMA2019.0034","DOIUrl":null,"url":null,"abstract":"Abstract: In this paper, we study the Cauchy problem of the fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces. By using the Fourier localization argument and the Littlewood-Paley theory, we get a local well-posedness results and global well-posedness results with small initial data belonging to the critical Fourier-Besov-Morrey spaces. Moreover; we prove that the corresponding global solution decays to zero as time goes to infinity, and we give the stability result for global solutions.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-OMA2019.0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract: In this paper, we study the Cauchy problem of the fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces. By using the Fourier localization argument and the Littlewood-Paley theory, we get a local well-posedness results and global well-posedness results with small initial data belonging to the critical Fourier-Besov-Morrey spaces. Moreover; we prove that the corresponding global solution decays to zero as time goes to infinity, and we give the stability result for global solutions.