An SEIR model with modified saturated incidence rate and Holling type II treatment function

Q2 Mathematics
Shilpa Umdekar, P. Sharma, Shivram Sharma
{"title":"An SEIR model with modified saturated incidence rate and Holling type II treatment function","authors":"Shilpa Umdekar, P. Sharma, Shivram Sharma","doi":"10.1515/cmb-2022-0146","DOIUrl":null,"url":null,"abstract":"Abstract In this article, the behavior of an susceptible exposed infected recovered (SEIR) epidemic model with nonlinear incidence rate and Holling type II treatment function is presented and analyzed. Reproduction number of the model is calculated. Equilibrium points are determined. Disease-free equilibrium exists when R0 is below 1. Behavior of disease-free equilibrium is examined at R0 = 1. Endemic equilibrium exists when R0 crosses 1. Stability of both equilibrium points is investigated locally and globally. Simulation is provided to support the result.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2022-0146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, the behavior of an susceptible exposed infected recovered (SEIR) epidemic model with nonlinear incidence rate and Holling type II treatment function is presented and analyzed. Reproduction number of the model is calculated. Equilibrium points are determined. Disease-free equilibrium exists when R0 is below 1. Behavior of disease-free equilibrium is examined at R0 = 1. Endemic equilibrium exists when R0 crosses 1. Stability of both equilibrium points is investigated locally and globally. Simulation is provided to support the result.
具有修正饱和发病率和Holling II型治疗函数的SEIR模型
摘要本文提出并分析了具有非线性发病率和Holling II型治疗函数的易感暴露感染恢复(SEIR)流行病模型的行为。计算模型的复制数。平衡点被确定。当R0小于1时,存在无病平衡。在R0 = 1时检验无病平衡的行为。当R0与1相交时,存在地方性平衡。研究了这两个平衡点的局部稳定性和全局稳定性。提供了仿真来支持该结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信