{"title":"Existence of saddle-type solutions for a class of quasilinear problems in R^2","authors":"C. O. Alves, Renan J. S. Isneri, P. Montecchiari","doi":"10.12775/tmna.2022.039","DOIUrl":null,"url":null,"abstract":"The main goal of the present paper is to prove the existence of saddle-type solutions for the following class of quasilinear problems\n$$\n-\\Delta_{\\Phi}u + V'(u)=0\\quad \\text{in }\\mathbb{R}^2,\n$$%\nwhere\n$$\n\\Delta_{\\Phi}u=\\text{div}(\\phi(|\\nabla u|)\\nabla u),\n$$%\n$\\Phi\\colon \\mathbb{R}\\rightarrow [0,+\\infty)$ is an N-function\nand the potential $V$ satisfies some technical condition and we have\nas an example $ V(t)=\\Phi(|t^2-1|)$.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The main goal of the present paper is to prove the existence of saddle-type solutions for the following class of quasilinear problems
$$
-\Delta_{\Phi}u + V'(u)=0\quad \text{in }\mathbb{R}^2,
$$%
where
$$
\Delta_{\Phi}u=\text{div}(\phi(|\nabla u|)\nabla u),
$$%
$\Phi\colon \mathbb{R}\rightarrow [0,+\infty)$ is an N-function
and the potential $V$ satisfies some technical condition and we have
as an example $ V(t)=\Phi(|t^2-1|)$.
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.