{"title":"A magnet falling inside a conducting pipe: Dependence of the drag force on\n the magnet orientation","authors":"Chang Hyeon Lee, Byung-Yoon Park","doi":"10.1119/5.0062860","DOIUrl":null,"url":null,"abstract":"We develop a simple model to investigate the orientation-dependence of the drag force acting on a magnet falling inside a vertical conducting pipe. We approximate the magnet by a point magnet and the pipe by a two-dimensional cylindrical surface. Independent of the magnet's orientation, the drag force is proportional to its velocity: F→d=−kv→. We show that the coefficient k→ of the horizontally oriented magnet is about 2/3 of the coefficient k↑ for the vertically oriented magnet. If the magnetic moment makes an angle θ with the vertical direction, the drag coefficient k can be expressed as k=k↑ cos2θ+k→ sin2θ. When the magnet falls with a non-vertical orientation, a local charge distribution is induced in the pipe, which plays a role as important as that of the time-varying magnetic field due to the falling magnet in generating the eddy currents. The model's predictions are compared with experimental results.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1119/5.0062860","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a simple model to investigate the orientation-dependence of the drag force acting on a magnet falling inside a vertical conducting pipe. We approximate the magnet by a point magnet and the pipe by a two-dimensional cylindrical surface. Independent of the magnet's orientation, the drag force is proportional to its velocity: F→d=−kv→. We show that the coefficient k→ of the horizontally oriented magnet is about 2/3 of the coefficient k↑ for the vertically oriented magnet. If the magnetic moment makes an angle θ with the vertical direction, the drag coefficient k can be expressed as k=k↑ cos2θ+k→ sin2θ. When the magnet falls with a non-vertical orientation, a local charge distribution is induced in the pipe, which plays a role as important as that of the time-varying magnetic field due to the falling magnet in generating the eddy currents. The model's predictions are compared with experimental results.
期刊介绍:
The mission of the American Journal of Physics (AJP) is to publish articles on the educational and cultural aspects of physics that are useful, interesting, and accessible to a diverse audience of physics students, educators, and researchers. Our audience generally reads outside their specialties to broaden their understanding of physics and to expand and enhance their pedagogical toolkits at the undergraduate and graduate levels.