MODIFIED NLM MODEL FOR DESPECKLING ULTRASOUND IMAGES USING FCM CLUSTERING BASED PRE CLASSIFICATION AND RIBM

K. M. Prabusankarlal, P. Thirumoorthy, R. Manavalan, R. Sivaranjani
{"title":"MODIFIED NLM MODEL FOR DESPECKLING ULTRASOUND IMAGES USING FCM CLUSTERING BASED PRE CLASSIFICATION AND RIBM","authors":"K. M. Prabusankarlal, P. Thirumoorthy, R. Manavalan, R. Sivaranjani","doi":"10.21917/ijivp.2018.0240","DOIUrl":null,"url":null,"abstract":"Speckle noise is an inherent characteristic of ultrasound which reduces the classification accuracy of computer aided diagnosis (CAD) systems. A modified non local means (NLM) filter for despeckling ultrasound images is proposed in this article. The proposed NLM model utilizes a preclassification method in which the feature vectors of the input image are constructed using moment invariants and then they are clustered using fuzzy c means (FCM) algorithm. The rotationally invariant block matching (RIBM) algorithm is applied among the blocks within each cluster instead of the entire image. This intra cluster block matching reduces computational complexity of NLM process without the elimination of any pixel candidate. Further, the rotationally invariant moment distance measure improves the noise reduction performance of the algorithm by increasing the chance of getting more similar candidates for NLM process. Extensive experiments are conducted using synthetic images, phantom images and ultrasound images. The method is comparatively evaluated with other denoising methods using statistical parameters such as MSE, PSNR, SSIM, EPI and ENL. The quantitative results suggested that the proposed method outperforms other four state of the art methods in despeckling and preservation of image details.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":"8 1","pages":"1708-1715"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/ijivp.2018.0240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Speckle noise is an inherent characteristic of ultrasound which reduces the classification accuracy of computer aided diagnosis (CAD) systems. A modified non local means (NLM) filter for despeckling ultrasound images is proposed in this article. The proposed NLM model utilizes a preclassification method in which the feature vectors of the input image are constructed using moment invariants and then they are clustered using fuzzy c means (FCM) algorithm. The rotationally invariant block matching (RIBM) algorithm is applied among the blocks within each cluster instead of the entire image. This intra cluster block matching reduces computational complexity of NLM process without the elimination of any pixel candidate. Further, the rotationally invariant moment distance measure improves the noise reduction performance of the algorithm by increasing the chance of getting more similar candidates for NLM process. Extensive experiments are conducted using synthetic images, phantom images and ultrasound images. The method is comparatively evaluated with other denoising methods using statistical parameters such as MSE, PSNR, SSIM, EPI and ENL. The quantitative results suggested that the proposed method outperforms other four state of the art methods in despeckling and preservation of image details.
基于FCM聚类的预分类和肋的超声图像去斑改进NLM模型
斑点噪声是超声的固有特征,它降低了计算机辅助诊断(CAD)系统的分类精度。本文提出了一种改进的非局部均值(NLM)超声图像去斑滤波方法。所提出的NLM模型采用了一种预分类方法,该方法使用矩不变量构造输入图像的特征向量,然后使用模糊c均值(FCM)算法对其进行聚类。采用旋转不变性块匹配(RIBM)算法对每个簇内的块进行匹配,而不是对整个图像进行匹配。这种聚类内块匹配在不消除任何候选像素的情况下降低了NLM过程的计算复杂度。此外,旋转不变矩距离度量通过增加获得更多相似候选NLM过程的机会来提高算法的降噪性能。广泛的实验进行了合成图像,幻影图像和超声图像。利用MSE、PSNR、SSIM、EPI和ENL等统计参数对该方法进行了对比评价。定量结果表明,该方法在去除斑点和保留图像细节方面优于其他四种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信