A Dual-Horizon Nonlocal Diffusion Model and Its Finite Element Discretization

IF 1.9 4区 数学 Q1 MATHEMATICS
Mingchao Bi, Lili Ju null, H. Tian
{"title":"A Dual-Horizon Nonlocal Diffusion Model and Its Finite Element Discretization","authors":"Mingchao Bi, Lili Ju null, H. Tian","doi":"10.4208/nmtma.oa-2022-0004s","DOIUrl":null,"url":null,"abstract":". In this paper, we present a dual-horizon nonlocal diffusion model, in which the influence area at each point consists of a standard sphere horizon and an irregular dual horizon and its geometry is determined by the distribution of the varying horizon parameter. We prove the mass conservation and maximum principle of the proposed nonlocal model, and establish its well-posedness and convergence to the classical diffusion model. Noticing that the dual horizon-related term in fact vanishes in the corresponding variational form of the model, we then propose a finite element discretization for its numerical solution, which avoids the difficulty of accurate calculations of integrals on irregular intersection regions between the mesh elements and the dual horizons. Various numerical experiments in two and three dimensions are also performed to illustrate the usage of the variable horizon and demonstrate the effectiveness of the numerical scheme.","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2022-0004s","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, we present a dual-horizon nonlocal diffusion model, in which the influence area at each point consists of a standard sphere horizon and an irregular dual horizon and its geometry is determined by the distribution of the varying horizon parameter. We prove the mass conservation and maximum principle of the proposed nonlocal model, and establish its well-posedness and convergence to the classical diffusion model. Noticing that the dual horizon-related term in fact vanishes in the corresponding variational form of the model, we then propose a finite element discretization for its numerical solution, which avoids the difficulty of accurate calculations of integrals on irregular intersection regions between the mesh elements and the dual horizons. Various numerical experiments in two and three dimensions are also performed to illustrate the usage of the variable horizon and demonstrate the effectiveness of the numerical scheme.
双视界非局部扩散模型及其有限元离散化
. 本文提出了一种双视界非局部扩散模型,其影响区域由标准球面视界和不规则双视界组成,其几何形状由视界参数的变化分布决定。我们证明了所提出的非局部模型的质量守恒性和极大值原理,并建立了该模型的适定性和收敛性。注意到与对偶视界相关的项实际上在模型的相应变分形式中消失了,然后我们提出了其数值解的有限元离散化,从而避免了网格单元与对偶视界之间不规则相交区域积分精确计算的困难。为了说明变视界的应用,并验证了数值格式的有效性,还进行了二维和三维的数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信