Klasifikasi Jenis Ikan Laut K-Nearest Neighbor Berdasarkan Ekstraksi Ciri 2-Dimensional Linear Discriminant Analysis

Yusraka Dimas, Alamul Iman, R. Isnanto, Oky Dwi Nurhayati
{"title":"Klasifikasi Jenis Ikan Laut K-Nearest Neighbor Berdasarkan Ekstraksi Ciri 2-Dimensional Linear Discriminant Analysis","authors":"Yusraka Dimas, Alamul Iman, R. Isnanto, Oky Dwi Nurhayati","doi":"10.25126/jtiik.20241046787","DOIUrl":null,"url":null,"abstract":"Indonesia adalah suatu negara kepulaun yang memiliki 2/3 wilayah lautan, secara sektor indonesia memiliki potensi pangan yang sangan besar dalam sektor perikanan. Ikan di dunia yang berhasil diuraikan sebanyak 27.000 terutama paling banyak dilaut indonesai. Ikan adalah salah satu keanekaragaman biologi yang menyusun ekosistem bahari. Ikan mempunyai bentuk serta ukuran eksklusif yang berbeda jenis yang satu dangan jenis yang lain. Pengenalan spesies ikan umumnya dilakukan secara manual dengan pengamatan mata. Tujuan penelitian ini untuk mengenali spesies ikan laut. 2-Dimensional Linear Discriminant Analysis (2D-LDA) dipergunakan untuk ekstraksi ciri dan K-Nearest Neighbor (K-NN) dipergunakan untuk klasifikasi jenis ikan laut. Fitur 2-Dimensional Linear Discriminant Analysis (2D-LDA) yang diekstraksi untuk menghasilkan dua matrik baru yaitu matrik score. Klasifikasi menggunakan metode K-Nearest Neighbor (K-NN) dengan membandingkan nilai k-n. Penelitian ini menggunakan 5 jenis ikan laut, dengan total data latih 800 gambar dan data uji 160 gambar. Hasil percobaan tebaik diperoleh k-9 dengan tingkat akurasi terbaik sebesar 93,12%, presisi 82,05%, recall 100%, dan F-1 score 90,14%.AbstractIndonesia is an archipelagic country which has 2/3 of the sea area, in terms of sector Indonesia has enormous food potential in the fisheries sector. There are 27,000 fish in the world that have been successfully described, especially in the Indonesian seas. Fish is one of the biological diversity that makes up the marine ecosystem. Fish have specific shapes and sizes that differ from one type to another. The identification of fish species is generally done manually by eye observation. The purpose of this research is to identify marine fish species. 2-Dimensional Linear Discriminant Analysis (2D-LDA) is used for feature extraction and K-Nearest Neighbor (K-NN) is used for classification of marine fish species. The 2-Dimensional Linear Discriminant Analysis (2D-LDA) features were extracted to produce two new matrices, namely the score matrix. The classification uses the K-Nearest Neighbor (K-NN) method by comparing the k-n values. This study used 5 types of marine fish, with a total of 800 images of training data and 160 images of test data. The best experimental results were obtained by k-9 with the best accuracy rate of 93.12%, precision of 82.05%, recall of 100%, and F-1 score of 90.14%.","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.20241046787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Indonesia adalah suatu negara kepulaun yang memiliki 2/3 wilayah lautan, secara sektor indonesia memiliki potensi pangan yang sangan besar dalam sektor perikanan. Ikan di dunia yang berhasil diuraikan sebanyak 27.000 terutama paling banyak dilaut indonesai. Ikan adalah salah satu keanekaragaman biologi yang menyusun ekosistem bahari. Ikan mempunyai bentuk serta ukuran eksklusif yang berbeda jenis yang satu dangan jenis yang lain. Pengenalan spesies ikan umumnya dilakukan secara manual dengan pengamatan mata. Tujuan penelitian ini untuk mengenali spesies ikan laut. 2-Dimensional Linear Discriminant Analysis (2D-LDA) dipergunakan untuk ekstraksi ciri dan K-Nearest Neighbor (K-NN) dipergunakan untuk klasifikasi jenis ikan laut. Fitur 2-Dimensional Linear Discriminant Analysis (2D-LDA) yang diekstraksi untuk menghasilkan dua matrik baru yaitu matrik score. Klasifikasi menggunakan metode K-Nearest Neighbor (K-NN) dengan membandingkan nilai k-n. Penelitian ini menggunakan 5 jenis ikan laut, dengan total data latih 800 gambar dan data uji 160 gambar. Hasil percobaan tebaik diperoleh k-9 dengan tingkat akurasi terbaik sebesar 93,12%, presisi 82,05%, recall 100%, dan F-1 score 90,14%.AbstractIndonesia is an archipelagic country which has 2/3 of the sea area, in terms of sector Indonesia has enormous food potential in the fisheries sector. There are 27,000 fish in the world that have been successfully described, especially in the Indonesian seas. Fish is one of the biological diversity that makes up the marine ecosystem. Fish have specific shapes and sizes that differ from one type to another. The identification of fish species is generally done manually by eye observation. The purpose of this research is to identify marine fish species. 2-Dimensional Linear Discriminant Analysis (2D-LDA) is used for feature extraction and K-Nearest Neighbor (K-NN) is used for classification of marine fish species. The 2-Dimensional Linear Discriminant Analysis (2D-LDA) features were extracted to produce two new matrices, namely the score matrix. The classification uses the K-Nearest Neighbor (K-NN) method by comparing the k-n values. This study used 5 types of marine fish, with a total of 800 images of training data and 160 images of test data. The best experimental results were obtained by k-9 with the best accuracy rate of 93.12%, precision of 82.05%, recall of 100%, and F-1 score of 90.14%.
印度尼西亚是一个拥有2/3海洋区域的海洋国家,其食品潜力在渔业领域大幅提高。世界上27000条鱼类被成功地描述为印尼海域中数量最多的鱼类。鱼类是构成海洋生态系统的生物多样性之一。鱼有不同的形状和大小,一种不知道另一种。鱼类物种识别通常是通过肉眼进行的。本研究的目的是确定海鱼的种类。二维线性分析(2D-LDA)用于提取特征和K-Nearest Neighbor用于海鱼类分类。提取了二维线性分析特性用K-Nearest邻居(K-NN)方法分类比较k-n价值。这项研究使用了5种海鱼,共进行了800张照片的培训和160张照片的测试数据。最好的实验结果警犬队最好的精确度高达93,12% 82,05%,召回100%精确,和f - 1比分90,14%。AbstractIndonesia是一个乡村archipelagic哪有三分之二的《海洋区条件的区域,在印尼有fisheries扇区中的潜在的巨大食品了。世界上有27000条鱼取得了成功,尤其是在印尼海。鱼是构成海洋生态系统的生物多样性之一。鱼有独特的形状和从一种类型到另一种类型的粘液。鱼类物种的识别通常是通过观察来完成的。这项研究的目的是确定海洋鱼类物种。二维线性分析(2D-LDA)用于动物迁徙和K-Nearest邻居(K-NN)被用于海洋鱼类物种的分类。二维线性分析(2D-LDA)的特征分析是产生两种新的母系,namely分数矩阵。被k-n预测的经典方法。这项研究使用了5种海洋鱼的类型,总共有800幅数据训练图像和160幅数据测试图像。最好的结果是由k-9最准确的计算为93.12%,准确为82.05%,F-1分为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信