{"title":"Dimorphism-dependent transgenerational effects facilitate divergence of drought tolerance in Synedrella nodiflora (L.) Gaertn","authors":"Qian Gan, Jingyu Liu, H. Liao, S. Peng","doi":"10.1093/jpe/rtac042","DOIUrl":null,"url":null,"abstract":"\n \n \n Transgenerational effects in plants incur opposing effects on the adaptation to predictable vs. unpredictable environments. While seed-dimorphic plants can produce dimorphic offspring with different adaptive strategies, it remains unclear whether the transgenerational effects and seed dimorphism may interact to dictate offspring adaptation. This study aimed to explore whether and how seed-dimorphic maternal plants impart different transgenerational effects to dimorphic offspring.\n \n \n \n Synedrella nodiflora was chosen as a study species, which is adaptive to a wide soil water gradient and produces two distinctive types of seeds (light disc vs. heavy ray seeds). In a greenhouse, S. nodiflora was grown for two generations under drought stress to test whether the transgenerational effects on offspring performance and mortality depend on maternal or offspring seed morph. The potential regulatory mechanisms were explored by measuring seed provisioning and chemical regulators of maternal plants and related reproductive processes.\n \n \n \n The transgenerational effects depended on both maternal and offspring seed morphs. Drought stress induced the maternal plants originated from ray seeds to increase the relative proportion of ray- vs. disc-seed offspring and transmit stronger adaptive transgenerational effects to the former, whereas its effects on the maternal plants originated from disc seeds were exactly opposite. These different effects on offspring corresponded with different seed abscisic acid and soluble sugar contents but not seed provisioning. Dimorphism-dependent transgenerational effects allow large divergence of drought tolerance among offspring, which may be an important but under-explored mechanism to balance the needs of population maintenance and range expansion in seed-dimorphic species.\n","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jpe/rtac042","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Transgenerational effects in plants incur opposing effects on the adaptation to predictable vs. unpredictable environments. While seed-dimorphic plants can produce dimorphic offspring with different adaptive strategies, it remains unclear whether the transgenerational effects and seed dimorphism may interact to dictate offspring adaptation. This study aimed to explore whether and how seed-dimorphic maternal plants impart different transgenerational effects to dimorphic offspring.
Synedrella nodiflora was chosen as a study species, which is adaptive to a wide soil water gradient and produces two distinctive types of seeds (light disc vs. heavy ray seeds). In a greenhouse, S. nodiflora was grown for two generations under drought stress to test whether the transgenerational effects on offspring performance and mortality depend on maternal or offspring seed morph. The potential regulatory mechanisms were explored by measuring seed provisioning and chemical regulators of maternal plants and related reproductive processes.
The transgenerational effects depended on both maternal and offspring seed morphs. Drought stress induced the maternal plants originated from ray seeds to increase the relative proportion of ray- vs. disc-seed offspring and transmit stronger adaptive transgenerational effects to the former, whereas its effects on the maternal plants originated from disc seeds were exactly opposite. These different effects on offspring corresponded with different seed abscisic acid and soluble sugar contents but not seed provisioning. Dimorphism-dependent transgenerational effects allow large divergence of drought tolerance among offspring, which may be an important but under-explored mechanism to balance the needs of population maintenance and range expansion in seed-dimorphic species.
期刊介绍:
Journal of Plant Ecology (JPE) serves as an important medium for ecologists to present research findings and discuss challenging issues in the broad field of plants and their interactions with biotic and abiotic environment. The JPE will cover all aspects of plant ecology, including plant ecophysiology, population ecology, community ecology, ecosystem ecology and landscape ecology as well as conservation ecology, evolutionary ecology, and theoretical ecology.