Technology roadmap for cold-atoms based quantum inertial sensor in space

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
S. Abend, B. Allard, A. Arnold, T. Ban, L. Barry, B. Battelier, A. Bawamia, Q. Beaufils, S. Bernon, A. Bertoldi, A. Bonnin, P. Bouyer, A. Bresson, Oliver S. Burrow, B. Canuel, B. Desruelle, Giannis Drougakis, R. Forsberg, N. Gaaloul, A. Gauguet, M. Gersemann, P. Griffin, H. Heine, V. Henderson, W. Herr, Simon Kanthak, M. Krutzik, M. Lachmann, R. Lammegger, W. Magnes, G. Mileti, M. Mitchell, S. Mottini, D. Papazoglou, F. Pereira dos Santos, A. Peters, E. Rasel, E. Riis, C. Schubert, S. Seidel, G. Tino, M. van den Bossche, W. von Klitzing, A. Wicht, M. Witkowski, N. Zahzam, M. Zawada
{"title":"Technology roadmap for cold-atoms based quantum inertial sensor in space","authors":"S. Abend, B. Allard, A. Arnold, T. Ban, L. Barry, B. Battelier, A. Bawamia, Q. Beaufils, S. Bernon, A. Bertoldi, A. Bonnin, P. Bouyer, A. Bresson, Oliver S. Burrow, B. Canuel, B. Desruelle, Giannis Drougakis, R. Forsberg, N. Gaaloul, A. Gauguet, M. Gersemann, P. Griffin, H. Heine, V. Henderson, W. Herr, Simon Kanthak, M. Krutzik, M. Lachmann, R. Lammegger, W. Magnes, G. Mileti, M. Mitchell, S. Mottini, D. Papazoglou, F. Pereira dos Santos, A. Peters, E. Rasel, E. Riis, C. Schubert, S. Seidel, G. Tino, M. van den Bossche, W. von Klitzing, A. Wicht, M. Witkowski, N. Zahzam, M. Zawada","doi":"10.1116/5.0098119","DOIUrl":null,"url":null,"abstract":"Recent developments in quantum technology have resulted in a new generation of sensors for measuring inertial quantities, such as acceleration and rotation. These sensors can exhibit unprecedented sensitivity and accuracy when operated in space, where the free-fall interrogation time can be extended at will and where the environment noise is minimal. European laboratories have played a leading role in this field by developing concepts and tools to operate these quantum sensors in relevant environment, such as parabolic flights, free-fall towers, or sounding rockets. With the recent achievement of Bose–Einstein condensation on the International Space Station, the challenge is now to reach a technology readiness level sufficiently high at both component and system levels to provide “off the shelf” payload for future generations of space missions in geodesy or fundamental physics. In this roadmap, we provide an extensive review on the status of all common parts, needs, and subsystems for the application of atom-based interferometers in space, in order to push for the development of generic technology components.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0098119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Recent developments in quantum technology have resulted in a new generation of sensors for measuring inertial quantities, such as acceleration and rotation. These sensors can exhibit unprecedented sensitivity and accuracy when operated in space, where the free-fall interrogation time can be extended at will and where the environment noise is minimal. European laboratories have played a leading role in this field by developing concepts and tools to operate these quantum sensors in relevant environment, such as parabolic flights, free-fall towers, or sounding rockets. With the recent achievement of Bose–Einstein condensation on the International Space Station, the challenge is now to reach a technology readiness level sufficiently high at both component and system levels to provide “off the shelf” payload for future generations of space missions in geodesy or fundamental physics. In this roadmap, we provide an extensive review on the status of all common parts, needs, and subsystems for the application of atom-based interferometers in space, in order to push for the development of generic technology components.
空间冷原子量子惯性传感器技术路线图
量子技术的最新发展产生了新一代用于测量惯性量的传感器,如加速度和旋转。当在太空中操作时,这些传感器可以表现出前所未有的灵敏度和准确性,在太空中,自由落体询问时间可以随意延长,环境噪声最小。欧洲实验室通过开发在相关环境中操作这些量子传感器的概念和工具,如抛物线飞行、自由落体塔或探空火箭,在该领域发挥了主导作用。随着最近在国际空间站实现Bose–Einstein凝聚,现在的挑战是在组件和系统层面达到足够高的技术准备水平,为未来几代的大地测量或基础物理学太空任务提供“现成”的有效载荷。在本路线图中,我们对基于原子的干涉仪在太空中应用的所有常见部件、需求和子系统的现状进行了广泛的回顾,以推动通用技术组件的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信