Lexicon-based Detection of Violence on Social Media

IF 0.5 0 LANGUAGE & LINGUISTICS
E. Abdelzaher
{"title":"Lexicon-based Detection of Violence on Social Media","authors":"E. Abdelzaher","doi":"10.1163/23526416-00501002","DOIUrl":null,"url":null,"abstract":"This study adopts a lexicon-based approach to address violence on social media. It uses FrameNet 1.7 (fn) and WordNet 3.1 (wn) to build a hierarchical domain-specific language resource of violence. The proposed lexicon tethers fn’s innovative integration of linguistic and paralinguistic knowledge to wn’s hierarchically-organized database. This tether alleviates the need to gather all paralinguistic violence-associated scenes and organize their linguistic realizations hierarchically. The proposed methodology can be internationally applied, given the multilingual availability of fn and wn, to cognitively and quantitatively explore a concept or a phenomenon. The lexicon is applied, then, to a corpus representing posts and comments retrieved from Donald Trump’s Facebook public page. Results reveal that the proposed lexicon recalls 92.68 of the total violence-related words in the corpus with a 76.31 precision (F-score= 83.7). More important, relating wn to fn inspires the creation of new frames, suggests slight modifications to existing ones and advocates promising mapping between some frames and synsets.","PeriodicalId":52227,"journal":{"name":"Cognitive Semantics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/23526416-00501002","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/23526416-00501002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 2

Abstract

This study adopts a lexicon-based approach to address violence on social media. It uses FrameNet 1.7 (fn) and WordNet 3.1 (wn) to build a hierarchical domain-specific language resource of violence. The proposed lexicon tethers fn’s innovative integration of linguistic and paralinguistic knowledge to wn’s hierarchically-organized database. This tether alleviates the need to gather all paralinguistic violence-associated scenes and organize their linguistic realizations hierarchically. The proposed methodology can be internationally applied, given the multilingual availability of fn and wn, to cognitively and quantitatively explore a concept or a phenomenon. The lexicon is applied, then, to a corpus representing posts and comments retrieved from Donald Trump’s Facebook public page. Results reveal that the proposed lexicon recalls 92.68 of the total violence-related words in the corpus with a 76.31 precision (F-score= 83.7). More important, relating wn to fn inspires the creation of new frames, suggests slight modifications to existing ones and advocates promising mapping between some frames and synsets.
基于词典的社交媒体暴力检测
这项研究采用了一种基于词汇的方法来解决社交媒体上的暴力问题。它使用FrameNet 1.7(fn)和WordNet 3.1(wn)来构建一个特定于暴力领域的分层语言资源。所提出的词典将fn对语言和副语言知识的创新整合与wn的分层组织数据库联系起来。这种束缚减轻了收集所有与副语言暴力相关的场景并分层组织其语言实现的需要。考虑到fn和wn的多语言可用性,所提出的方法可以在国际上应用,以认知和定量地探索一个概念或现象。然后,该词典被应用于代表从唐纳德·特朗普的脸书公共页面检索到的帖子和评论的语料库。结果表明,所提出的词典以76.31的准确率回忆了语料库中92.68个与暴力有关的单词(F分数=83.7)。更重要的是,将wn与fn联系起来可以激发新框架的创建,建议对现有框架进行轻微修改,并主张在一些框架和同义词之间进行有希望的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Semantics
Cognitive Semantics Arts and Humanities-Language and Linguistics
CiteScore
0.50
自引率
0.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信