Yuxi Chen, Yongliang Li, Chongyang Yuan, Shujun Liu, F. Xin, Xuliang Deng, Xiaoyan Wang
{"title":"Streptococcus mutans cell division protein FtsZ has higher GTPase and polymerization activities in acidic environment.","authors":"Yuxi Chen, Yongliang Li, Chongyang Yuan, Shujun Liu, F. Xin, Xuliang Deng, Xiaoyan Wang","doi":"10.1111/omi.12364","DOIUrl":null,"url":null,"abstract":"The acid tolerance of Streptococcus mutans plays an important role in its cariogenic process. S. mutans initiates a powerful transcriptional and physiological adaptation mechanism, eventually shielding the cellular machinery from acid damage and contributing to bacterial survival under acidic stress conditions. Although S. mutans contains complex regulatory systems, existing studies have shown that S. mutans, unlike Escherichia coli, cannot maintain a neutral intracellular environment. As the pH of the extracellular environment decreases, the intracellular pH decreases in parallel. There is insufficient knowledge regarding the acid resistance of the intracellular proteins of S. mutans, particularly when it comes to the key cytoskeletal division protein FtsZ. In this study, the data showed that S. mutans had similar cell division progress in acidic and neutral environments. The splitting position was in the middle of cells, and the cytoplasm were divided evenly in the acidic environment. Additionally, the treadmilling velocity of S. mutans FtsZ in the middle of cells was not affected by the acidic environment. S. mutans FtsZ had higher GTPase activity in pH 6.0 buffer than in the neutral environment. Furthermore, the polymerization of S. mutans FtsZ in the acidic environment was more robust than that in the neutral environment. After two particular amino acids of S. mutans FtsZ amino acids were mutated (E88K, L269K), the polymerization of S. mutans FtsZ in the acidic environment was significantly reduced. Overall, S. mutans FtsZ exhibited higher functional activity in pH 6.0 buffer in vitro. The acid resistance of S. mutans FtsZ is affected by its particular amino acids. This article is protected by copyright. All rights reserved.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12364","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 1
Abstract
The acid tolerance of Streptococcus mutans plays an important role in its cariogenic process. S. mutans initiates a powerful transcriptional and physiological adaptation mechanism, eventually shielding the cellular machinery from acid damage and contributing to bacterial survival under acidic stress conditions. Although S. mutans contains complex regulatory systems, existing studies have shown that S. mutans, unlike Escherichia coli, cannot maintain a neutral intracellular environment. As the pH of the extracellular environment decreases, the intracellular pH decreases in parallel. There is insufficient knowledge regarding the acid resistance of the intracellular proteins of S. mutans, particularly when it comes to the key cytoskeletal division protein FtsZ. In this study, the data showed that S. mutans had similar cell division progress in acidic and neutral environments. The splitting position was in the middle of cells, and the cytoplasm were divided evenly in the acidic environment. Additionally, the treadmilling velocity of S. mutans FtsZ in the middle of cells was not affected by the acidic environment. S. mutans FtsZ had higher GTPase activity in pH 6.0 buffer than in the neutral environment. Furthermore, the polymerization of S. mutans FtsZ in the acidic environment was more robust than that in the neutral environment. After two particular amino acids of S. mutans FtsZ amino acids were mutated (E88K, L269K), the polymerization of S. mutans FtsZ in the acidic environment was significantly reduced. Overall, S. mutans FtsZ exhibited higher functional activity in pH 6.0 buffer in vitro. The acid resistance of S. mutans FtsZ is affected by its particular amino acids. This article is protected by copyright. All rights reserved.
期刊介绍:
Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections.
Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal.
The journal does not publish Short Communications or Letters to the Editor.
Molecular Oral Microbiology is published bimonthly.