COMPUTATIONAL TURBULENT COMBUSTION IN THE AGE OF ARTIFICIAL INTELLIGENCE AND QUANTUM INFORMATION

IF 0.2 Q4 MATHEMATICS
Givi Payman
{"title":"COMPUTATIONAL TURBULENT COMBUSTION IN THE AGE OF ARTIFICIAL INTELLIGENCE AND QUANTUM INFORMATION","authors":"Givi Payman","doi":"10.26577/ijmph.2021.v12.i1.01","DOIUrl":null,"url":null,"abstract":". The impact of high-performance computing on the society has been enormous, but it is easy to be taken for granted. In today’s world, it is virtually impossible to imagine system design or major decision making not aided via predictive modeling and simulation. Now that we are experiencing the Data Revolution and the emergence of the Second Quantum Revolution , it is wise to consider both of these elements in computational science and engineering. Data-driven modeling approaches and demonstrated speed-ups of quantum algorithms have the potential to transform scientific discovery. This will affect the fabrics of industrialized societies in diverse disciplines. A research arena which can substantially benefit from these technologies is combustion. This field has been the subject of heavy computational research for many decades now. In this review, some examples taken from the previous works of the author are presented to demonstrate how the field of computational turbulent combustion is benefiting from modern developments in machine learning (ML) and quantum computing (QC).","PeriodicalId":40756,"journal":{"name":"International Journal of Mathematics and Physics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26577/ijmph.2021.v12.i1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. The impact of high-performance computing on the society has been enormous, but it is easy to be taken for granted. In today’s world, it is virtually impossible to imagine system design or major decision making not aided via predictive modeling and simulation. Now that we are experiencing the Data Revolution and the emergence of the Second Quantum Revolution , it is wise to consider both of these elements in computational science and engineering. Data-driven modeling approaches and demonstrated speed-ups of quantum algorithms have the potential to transform scientific discovery. This will affect the fabrics of industrialized societies in diverse disciplines. A research arena which can substantially benefit from these technologies is combustion. This field has been the subject of heavy computational research for many decades now. In this review, some examples taken from the previous works of the author are presented to demonstrate how the field of computational turbulent combustion is benefiting from modern developments in machine learning (ML) and quantum computing (QC).
人工智能与量子信息时代的计算湍流燃烧
。高性能计算对社会的影响是巨大的,但它很容易被视为理所当然。在当今世界,如果没有预测建模和仿真的帮助,几乎不可能想象系统设计或主要决策制定。现在我们正在经历数据革命和第二次量子革命的出现,在计算科学和工程中考虑这两个因素是明智的。数据驱动的建模方法和量子算法的演示加速有可能改变科学发现。这将影响不同学科的工业化社会结构。一个可以从这些技术中获益的研究领域是燃烧。几十年来,这个领域一直是大量计算研究的主题。在这篇综述中,从作者以前的作品中选取了一些例子,以展示计算湍流燃烧领域如何受益于机器学习(ML)和量子计算(QC)的现代发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
11
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信