{"title":"HRTEM study of ZnS Nanowires films deposited by thermal evaporation","authors":"B. Abdallah, M. Kakhia, W. Zetoune","doi":"10.22052/JNS.2020.04.004","DOIUrl":null,"url":null,"abstract":"ZnS nanowires films on Si (100) substrate have been obtained, using PbS as dopant, via thermal evaporation technique. High resolution transmission electron microscopy (HRTEM) images have confirmed the formation of ZnS nanowires. Energy dispersive X-ray analysis (EDX) has been employed to investigate the element’s contents (mapping and area analysis) and it has confirmed that the ZnS films were stoichiometry. Thickness and morphology of the films were explored from cross section of the films and surface, respectively, using scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. These images confirmed the creation of ZnS nanostructures morphology. The diameter of the obtained nanowires is about 50 nm and their length is several micrometer. Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), and Photoluminance (PL) have confirmed the hexagonal phase with nanowires structure. UV-Vis characterization has been used to obtain the transparency and the band gap of ZnS films deposited on glass substrate. Also, these verified characterizations allowed to potential optical application in optoelectronic field","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"713-722"},"PeriodicalIF":1.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.04.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
ZnS nanowires films on Si (100) substrate have been obtained, using PbS as dopant, via thermal evaporation technique. High resolution transmission electron microscopy (HRTEM) images have confirmed the formation of ZnS nanowires. Energy dispersive X-ray analysis (EDX) has been employed to investigate the element’s contents (mapping and area analysis) and it has confirmed that the ZnS films were stoichiometry. Thickness and morphology of the films were explored from cross section of the films and surface, respectively, using scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. These images confirmed the creation of ZnS nanostructures morphology. The diameter of the obtained nanowires is about 50 nm and their length is several micrometer. Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), and Photoluminance (PL) have confirmed the hexagonal phase with nanowires structure. UV-Vis characterization has been used to obtain the transparency and the band gap of ZnS films deposited on glass substrate. Also, these verified characterizations allowed to potential optical application in optoelectronic field
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.