Anthony Sicilia, Tristan D. Maidment, Pat Healy, Malihe Alikhani
{"title":"Modeling Non-Cooperative Dialogue: Theoretical and Empirical Insights","authors":"Anthony Sicilia, Tristan D. Maidment, Pat Healy, Malihe Alikhani","doi":"10.1162/tacl_a_00507","DOIUrl":null,"url":null,"abstract":"Abstract Investigating cooperativity of interlocutors is central in studying pragmatics of dialogue. Models of conversation that only assume cooperative agents fail to explain the dynamics of strategic conversations. Thus, we investigate the ability of agents to identify non-cooperative interlocutors while completing a concurrent visual-dialogue task. Within this novel setting, we study the optimality of communication strategies for achieving this multi-task objective. We use the tools of learning theory to develop a theoretical model for identifying non-cooperative interlocutors and apply this theory to analyze different communication strategies. We also introduce a corpus of non-cooperative conversations about images in the GuessWhat?! dataset proposed by De Vries et al. (2017). We use reinforcement learning to implement multiple communication strategies in this context and find that empirical results validate our theory.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"10 1","pages":"1084-1102"},"PeriodicalIF":4.2000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00507","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Investigating cooperativity of interlocutors is central in studying pragmatics of dialogue. Models of conversation that only assume cooperative agents fail to explain the dynamics of strategic conversations. Thus, we investigate the ability of agents to identify non-cooperative interlocutors while completing a concurrent visual-dialogue task. Within this novel setting, we study the optimality of communication strategies for achieving this multi-task objective. We use the tools of learning theory to develop a theoretical model for identifying non-cooperative interlocutors and apply this theory to analyze different communication strategies. We also introduce a corpus of non-cooperative conversations about images in the GuessWhat?! dataset proposed by De Vries et al. (2017). We use reinforcement learning to implement multiple communication strategies in this context and find that empirical results validate our theory.
期刊介绍:
The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.