{"title":"Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem","authors":"Mehdi Dehghanian, Choonkill Park, Y. Sayyari","doi":"10.56754/0719-0646.2502.273","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of ternary antiderivation on ternary Banach algebras and investigate the stability of ternary antiderivation in ternary Banach algebras, associated to the $(\\alpha,\\beta)$-functional inequality: \\begin{align*} &\\Vert \\mathcal{F}(x+y+z)-\\mathcal{F}(x+z)-\\mathcal{F}(y-x+z)-\\mathcal{F}(x-z)\\Vert \\nonumber\\\\ &\\leq \\Vert \\alpha (\\mathcal{F}(x+y-z)+\\mathcal{F}(x-z)-\\mathcal{F}(y))\\Vert + \\Vert \\beta (\\mathcal{F}(x-z)\\\\ &+\\mathcal{F}(x)-\\mathcal{F}(z))\\Vert \\end{align*} where $\\alpha$ and $\\beta$ are fixed nonzero complex numbers with $\\vert\\alpha \\vert +\\vert \\beta \\vert<2$ by using the fixed point method.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2502.273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce the concept of ternary antiderivation on ternary Banach algebras and investigate the stability of ternary antiderivation in ternary Banach algebras, associated to the $(\alpha,\beta)$-functional inequality: \begin{align*} &\Vert \mathcal{F}(x+y+z)-\mathcal{F}(x+z)-\mathcal{F}(y-x+z)-\mathcal{F}(x-z)\Vert \nonumber\\ &\leq \Vert \alpha (\mathcal{F}(x+y-z)+\mathcal{F}(x-z)-\mathcal{F}(y))\Vert + \Vert \beta (\mathcal{F}(x-z)\\ &+\mathcal{F}(x)-\mathcal{F}(z))\Vert \end{align*} where $\alpha$ and $\beta$ are fixed nonzero complex numbers with $\vert\alpha \vert +\vert \beta \vert<2$ by using the fixed point method.