{"title":"Qualitative Stability Analysis of a Non-Hyperbolic Equilibrium Point of a Caputo Fractional System","authors":"Marvin Hoti","doi":"10.22034/CMDE.2021.41486.1799","DOIUrl":null,"url":null,"abstract":"In this manuscript a center manifold reduction of the flow of a non-hyperbolic equilibrium point on a planar dynamical system with the Caputo derivative is proposed. The stability of the non-hyperbolic equilibrium point is shown to be locally asymptotically stable, under suitable conditions, by using the fractional Lyapunov direct method.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.41486.1799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this manuscript a center manifold reduction of the flow of a non-hyperbolic equilibrium point on a planar dynamical system with the Caputo derivative is proposed. The stability of the non-hyperbolic equilibrium point is shown to be locally asymptotically stable, under suitable conditions, by using the fractional Lyapunov direct method.