{"title":"Motion of a sphere and the suspending low-Reynolds-number fluid confined in a cubic cavity","authors":"Gaofeng Chen , Xikai Jiang","doi":"10.1016/j.taml.2022.100352","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamics of a spherical particle and the suspending low-Reynolds-number fluid confined by a cubic cavity were studied numerically. We calculated the particle’s hydrodynamic mobilities along <span><math><mi>x</mi></math></span>-, <span><math><mi>y</mi></math></span>-, and <span><math><mi>z</mi></math></span>-directions at various locations in the cavity. The mobility is largest in the cavity center and decays as the particle becomes closer to no-slip walls. It was found that mobilities in the entire cubic cavity can be determined by a minimal set in a unit tetrahedron therein. Fluid vortices in the cavity induced by the particle motion were observed and analyzed. We also found that the particle can exhibit a drift motion perpendicular to the external force. Magnitude of the drift velocity normalized by the velocity along the direction of the external force depends on particle location and particle-to-cavity sizes ratio. This work forms the basis to understand more complex dynamics in microfluidic applications such as intracellular transport and encapsulation technologies.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"12 4","pages":"Article 100352"},"PeriodicalIF":3.2000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034922000320/pdfft?md5=2c59c1dcf3939d7fe6aa7c47861d030d&pid=1-s2.0-S2095034922000320-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000320","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
Dynamics of a spherical particle and the suspending low-Reynolds-number fluid confined by a cubic cavity were studied numerically. We calculated the particle’s hydrodynamic mobilities along -, -, and -directions at various locations in the cavity. The mobility is largest in the cavity center and decays as the particle becomes closer to no-slip walls. It was found that mobilities in the entire cubic cavity can be determined by a minimal set in a unit tetrahedron therein. Fluid vortices in the cavity induced by the particle motion were observed and analyzed. We also found that the particle can exhibit a drift motion perpendicular to the external force. Magnitude of the drift velocity normalized by the velocity along the direction of the external force depends on particle location and particle-to-cavity sizes ratio. This work forms the basis to understand more complex dynamics in microfluidic applications such as intracellular transport and encapsulation technologies.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).